rnmmvnﬂ*r STOTEMLIT x}

Approved o1, punis mlozoy
Dt na y:u._,.. "'d ‘_‘_;

DEPARTMENT OF THE AIR FORCE e
AIR UNIVERSITY P~

AIR FORCE INSTITUTE OF TECHNOLOGY o=

z - —

Wright-Patterson Air Force Base, Ohio

19 1538

91 7

AFIT/GCS/ENG/91-]-0l

AN ADA BASED EXPERT SYSTEM
FOR
THE ADA VERSION OF SAtool II

THESIS

Min-fuh Shyong
Major, ROCAF

AFIT/GCS/ENG/91-3-0l

1-05717
\\l\\\l\I\\\\\l\\\|‘|\|\\\\\|\|\\\l\\\\\\\“‘

Approved for public release, distribution unlimited

REPORT DGIUMENTLTION PAGE

O ARGIOVE
WAL R MLt

= s A st ammyppan tor e . e PR oo epgmien

| Gemer m e JAD PLART ML TRE TAT AAOEEE yre amL
PEO et N TTeoatormang S ol
Dacer e, Sane 1208 .0 - e < edea "

3,

e B e T TR

N e e I C T LT LN

N N L

T AGENCY USE ONLY .cv#e Dlars .. RIRQST DATS {3 REPORT TYP*
i
6 _June 1991 :

ANTY DATES CO'ERED

Z TILEI AND SUBTITL:
An Ada Based Expert System for the Ada Version

SAtool II (Volume I & II)

> FUNDING NUMBERS
of

v, AJTHOR({S)

Min-fuh Shyong

Department of Electrical and Computer
ENgineering School of ENgineering: AFIT
Wright-Patterson AFB, OH 45433

5

* ¢ PERAFORMING ORGANIZATION
REFOR™ NUMBEP.

RFT]6LS|EN ¢[a17-o]

C. SPONSORING ., MONITO WG ACINRTY NAMEISG AND ADDRESSES)
SOFTWARE ENGINEERING BRANCH (COEE)
ROME AIR DEVELOPMENT CENTER
GRIFFISS AFB NY 13411
F. Lamonica

10 SPONSORING. MONITORING
~GENCY REPORT NUMSER

1. SUPPLEMENTARY NO7E.

12¢. BISTRIBUTION AVAILABILITY STATEMEN

/ Distribution Unlimited

]
]
H
]

125 DISTRIBUTION CODE

“: ALSTRALT (Marevu= 7y o

3 This thesis continues the work of implementing the expert system for
the Ada version of SAtool II, an software design requirement analysis
tool. The background, history, design process together with the
design results and validation of the implementation with Ada and

CLIPS/Ada is presented.

e—

L6727 TERM T RUNSTT (..
Syntax Checking Expert System, SA, SADT, SAtool, 252
SAtool II, ES, CLIPS, CLIPS/Ada. TRt

E T

e RIT LU it . PINN

Pl 2 . .. PR
L Yot I

Unclassified Unclassified Unclassifieu UL

AFIT/GCS/ENG/91-3-0l

AN ADA BASED EXPERT SYSTEM
FOR

THE ADA VERSION OF SAtoot II

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer System)

Min-fuh Shyong, B.S.

Major, ROCAF

June, 1991

Approved for public release; distribution unlimited

.

’\~,‘
At ’lo.u.;

f'y' l') k)(‘ ’

ne ,. .-
hed U

— et v e -

- s e s e e

U e :r:i
J,. eI PR
By .
D t)l ¢)}I
i!()l‘) "—n- .
»-—-——o—-—-—- .o
Dist ‘;‘w’\‘
F
f

in s e s

Preface

This thesis continues the work of implementing the expert system for the Ada version of
SAtool-IT , which is based on the essential data model of the IDEF, language (16). IDEFy is a
graphic approach to system description developed by SofTech, Inc. for the U.S. Air Force Program
for Integrated Computer-Aided Manufacturing (ICAM) and is a subset of the Structured Analysis
(SA) language (24) (20). The research goal is to develop an object based Ada CASE tool (SAtool

II) using the abstract data model as the requirements document (16) (28).

The essential subsystem has been developed for future integration with the Ada based, IDEF,
CASE tool, SAtool II, (28). The original SAtool was developed by Steve Johnson (13). D. H. Jung’s
explored the idea of performing syntax checking on the SAtool output(14). His research focused
on the prototype development of an IDEF, syntax (language) validation tool which is an expert
system to perform a syntax validation of the IDEF, diagram. Intack Kim continued research on the
integration of an expert system with SAtool(15). Overlaping with the work of Kim, Terry Kitchen
and Jay Tevis jointly designed the essential model and graphics editor model for the Ada based

SAtool.

The development of this subsystem, as well as SAtool 11, is part of ongoing research at the
Air Force Institute of Technology, in association with the Strategic Defense Initiative Organization
(SDIO), on the use of IDEF, as a software requirements modeling methodology. SAtool II has
shown that an Ada based expert system to check the syntax of an IDEF, diagram is feasible.
In this thesis, we discuss the design, development, implementation, validation and results of the
continuing research on the expert system. This research is performed to determine the feasibility
of Ada in the development of CASE tools and expert systems and to provide a subsystem that will

be integrated with SAtool 1II.

I would like to thank the many people who supported me during this research. First of all,

I’d like to express my gratitude to Dr. Gary B. Lamont, my thesis advisor, for his guidance and

inspiration through this research.

I thank my thesis committee memebers, Dr. Thomas C. Hartrum and Capt. Robert J.

Hammell II for their contribution to this thesis.

I would also like to thank Dr. Frank M. Brown and Major Gunsch, who were my Alinstructors
and had given me many advices. And Dr. Mark Roth, my course advisor who helped me through
all the efforts. In addition, I thank all the professors, faculties that have helped me either directly

or indirectly to accomplish my effort at AFIT.

My greatest thanks to my parent for their encouragement, and my wife, Jin-rong, whose love,

devoticn, and morale support kept me going through all the long days and nights.

Finally, I want to thank my daughter Chien-huey and son Jiun-yenn, and I will build them
up to understand that knowledge is the source of power, so they will know why daddy is always

studying.

Min-fuh Shyong

Table of Contents

Page

Preface e e e e e e e e ii
Table of Contents i i i e e e e e e e e e v
List of Figures e e e e e e e e vii
List of Tables i e e viii
1. INTRODUCTION i et e e e e e e e e e e e 1
Background e .. 1

History o i e e e e e e e e e e e e e 11

Problem Statement 13
AsSumptions v . it e e e e e e e 13

Research Approach i 15
Materialsand Equipment Lo e e 16

Scope and Limitations 16

Sequence cf Presentation 16

I[I. LITERATURE REVIEW e e e 18
Introduction e 18

IDEFs e e e e 18
Introductionto CLIPS 29

Essential Model of the IDEFy Abstract DataModel. 30

Facts utilities. e 31

CLIPS Working Memory Interface and Rules File. 31

Expert Systems. 32

Integration of Expert Systems with CASE Tools. 32

iv

iIL.

v.

SAtool with Syntax Validation.
Specification-Transformation Expert System (STES).
Visible Analyst Workbench.

Summary e e e e e e e e e e

REQUIREMENTS ANALYSIS i
Introduction e
Consideration of the Previous Studies
Facts Translator Requirements-Essential Fact_Utilities.

Retrieve Essential Data Model Information.

Restore Essential Data Model Information.
CLIPS_Working Memory Interface.
Essential IO. o e
Syntax Checking Expert System Requirements

SUMMALY e e e e e e e e

HIGH LEVEL DESIGN e e e
Introduction
Previous Study Considerations
IDEF, Diagram Translator

Retrieve Procedures.
Restore Procedures.
IDEF, Syntax Expert System Components
The Inference Engine Selected.
Knowledge Base.,
Data Base (Working Memory).
User Interface.
Test Plan o e

SUMMALY . .« o o e e e e e e e e e e e e

45

46
46
47
47
51
53
53
53
55
56

V. DETAILED DESIGHN, IMPLEMENTATION, AND TESTING 61
Introduction e 61

IDEF, Diagram Translator Implementation 61

Expert System Syntax Checking Rules Design 62

IDEFo Diagram Syntax Analysis. 64

Syntax Checking Environment. 67

Essential Model Facts Format Analysis for Boundary Arrows. 67

Translation Rules for Boundary Arrows. 69

Hierarchical Consistency Checking Rules. 76

Testing Expectations 80

Test Results Validation 81

Summaryo e e e 83

VI. CONCLUSIONS AND RECOMMENDATIONS 84
Introduction e 84

Conclusions v i i e e e 84
Recommendations e 86

Boundary Single Data Item. 86

Boundary Pipeline Dataltems. 86

Further IDEF Diagtams Drawing Features. 87

Bibliography e 88

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

List of Figures

Example of a IDEFy Diagram
Basic Concept of an Expert System Function
Development of an Expert System
The Structure of a Rule-Based Expert System . . .
Clips/Ada Visibility with Essential Subsystems . . .
Components of a Context Diagram.

Hierarchy Diagram for ‘Control Elevator’

A-0 Essential Model Diagram for ‘Control Elevator’

A0 Diagram for ‘Control Elevator’
Al Diagram for ‘Control Elevator’
A12 Diagram for ‘Control Elevator’
A2 Diagram for ‘Control Elevator’
A26 Diagram for ‘Control Elevator’

Module Diagram for Essential_Fact.Utilities.

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

Module Diagram for Clips_-Working MemoryInterface

Module Diagram for Essential I0
Flow Diagram for IDEFy Diagram Translator
Essential Subsystems Relations and Visibility

A Typical Activity Box Features

Hierarchical Boundary Relations Between Parent and Child Activities

Pattern Matching: Rules and Facts

Intermediate Data Arrows Between Child Activities

Pipeline Consists of Data Arrow Relations

SAtool IT Syntax Checking Rules visibility network

..................

Page

10
11
14
20
22
23

24

26
21
28
40
41
42

48

Table
1.

2.

3.

List of Tables

Object Classes Managers and Facts Format Extracted by Essential_Fact_Utilities . .

if...then Construct for the IDEF, Syntax Checking Knowledge Base

Possible Syntax Expert System Checking Results

Page
52

77

78

Page

AN ADA BASED EXPERT SYSTEM
FOR

THE ADA VERSION OF SAtool II

I. INTRODUCTION

Background

To improve the productivity of quality software has been an objective ever since the first
programmer Ada Lovelace first put quill pen to paper to program Babbage’s analytic engine.
Software development tools was expected by the software developers ever since. The recognition
of the existence of the Software Crisis was initially revealed in the International Conference of
Software Engineering at Garmisch, West Germany, in 1968 and continues today (4:1-3). In a
sense, the essence of the software crisis is simply that it is much more difficult to build software

systems than our intuition reflects (11).

In the systematic development and analysis of specific algorithms, especially for software
development, computational complexity, is a field of study that runs in parallel with algorithmics.
To consider globally the class of all algorithms that are able to solve a given problem is no doubt
impossible in practice. Using algorithmics, we may prove by giving an explicit algorithm, that
a certain problem can be solved in an acceptable time. Using complexity constraints, we try to
find any algorithm that is capable of solving our problem correctly on all instances. Thus, it is
manageable, applicable, and can be implemented. We may have found the most efficient algorithm
possible. In this case we say that the complexity of the problem is known exactly; unfortunately,
this does not happen often. An algorithm developer should seek the design that is consistent and

within the complexity constraints of the particular effort (6:292).

Traditional computing technology has been able to develop powerful solutions for problems
which can be clearly and completely codified-that is, problems that have algorithmic or closed form
solutions. In practical problem solving there are many areas where such methods cannot he applied,
where experts are needed to gather and interpret data and select a strategy for solving a problem.
Such problems are typically poorly specified, difficult to define, heavily dependent upon rules of
thumb-or heuristics. It is in these less well specified domains that expert systems can contribute

(12:1-1).

As a rule of thumb, software development tools are crucial to the success of such an effort
(19). Software development tools are designed to save both the time and effort. of the designers.
Here at AFIT, we have a tool called SAtool(15) that could be used as an requirement analysis tool
during the first phase of the software development lifecycle, the requirement aralysis phase. Tools
should have a friendly interactive user interface, thus easy to learn and quick in application. Also

they should produce acceptable results.

In order to develop a more powerful environment an expert system funct.on is appropriate
as a feature of SAtool(16). Once it is accomplished, the user. can development their require-
ments/specification using the software development requirement analysis tool. In particular they
could perform syntax checking functions without time nsuming manual checks. Some terms must

be defined in order to facilitate the understanding of the development of such an expert system.

Computer Aided Software Engineering (CASE). In the process of developing computer
software, a case tool is any software tool used by lesigner during the development of software. It
involves all the tools that could be integrated together as a software working environment. CASE
tools may be used during any of the development phases:

1. System Requirements

2. Software Requirements

3. Analysis

4. Program Design
5. Coding (implementation)
6. Testing

7. Operations (11:250)

Prior to the late 1970s, the most common method for representing user requirements for
system development was informal narrative English (30:123). These requirements exhibited sev-
eral undesirable characteristics (30:123-124): monolithic, redundant, ambiguous, and maintenance
difficulties. The importance of well defined software requirements is crucial to the success of the

particular project both in time and efficiency. Five important reasons are:

1. The later in the development life cycle that a software error is detected, the more expensive

it will be to correct. More time will be wasted.

2. Many errors remain lalent and are not detected until well after the stage at which they are

made.
3. Many requirements errors are made.

4. Errors made in requirements specifications are typically incorrect facts, omissions, incons.s-

tencies, and ambiguities.

5. Requirements errors can be detected(9:23-26).

The recognized need for an improved methodology led to the gradual transformation of in-
formal methods into semi-formal methods that were graphic, partitioned, and minimally redun-
dant (30:124-125). Early formalized methods included Data Flow Diagrams (DFDs), Entity-
Relationship (E-R) Diagrams, DeMarco Data Structure Diagrams, Jackson Data Structure Dia-
grams, and Structured Analysis (SA) (24) (30:299-300). However, without automated tools to

draw and validate the graphical models, the process of developing and mamtaining the models

sometimes became overwhelming, especially for systems whose revuirements constantly changed
and were of considerable complexity. Naturally, this spurred research and development of a class of
products known as Computer Aided Software Engineering (CASE) tools which support the drawing

and validation process(30:128,464).

Structured Analysis (SA) and SADT. A similar yet alternative graphical modeling
method to the DFD is SA developed by Ross (24) (30:299). According to Ross, the SA technique

produces:

a hierarchically organized structure of separate diagrams, each of which exposes only a
limited part of the subject to view, so that even very complex subjects can be under-
stood. The structured collection of diagrams is called a SA Model. (24:17)
SA permits requirements to be modeled in one of two ways: data decomposition or activity (process)
decomposition (24:19). SA is the basis for the development of the Structured Analysis Design
Technique (SADT?) by SofTech, Inc. SADT is described in the book SADT: Siructured Analysis
and Design Technique by Marca and McGowan. SADT is a graphical system for systems analysis
and design. The SADT syntax is based upon an hierarchical set of diagrams. A diagram at one

level is decomposed into several diagrams at a lower level to expose more detail as a program is

developed (19).

IDEF;. IDEF, is a requirements modeling technique developed by SofTech for the U.S. Air
Force program for Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF, stands
for ICAM Definition Method Zero. IDEF, defines a subset of SA that omits the data decomposi-
tion and only permits requirements to be functionally or process modeled. The original purpose of
IDEFy is the “representation of the functions of a manufacturing system or environment”. How-
ever, IDEF, can also be used as a graphical language for modeling system requirements, including

software systems. Functions(activities) are the basic objects of decomposition in SADT/IDEF,.

1SADT is a registered trademark of SofTech, Inc.

R

These functions represent different processes which may occur in a program. The graphical repre-
sentation for a function is a “rectangular box”. Data items needed by or produced by the different
processes are graphically represented as “arrows”. These arrows are grouped into four basic cate-
gories which help defining the interface between the different functions: inputs, outputs, controls,

and mechanisms. More detailed explanations are illustrated below:

o function — A function represents a process or action, and is best identified by a name that
starts with a verb. The function is viewed as transforming its inputs into outputs under the

guidance of its controls.
e data item ~ Data or information produced by or needed by a function.
o input — An data item arrow enter the left side of the function box
¢ output — An data item arrow leave the right side of the box.

o control — Defines the condition or circumstances under which the transformation from input

to output occurs.

¢ mechanism — An arrow entering the bottom of the function, indicate a means of performing

the functions.

¢ call - A mechanism arrow exiting from the bottom of the box, indicates that the function is a
shared model. That is, it is decomposed either elsewhere in the system model, or in another

systems model.(20)

An example of an IDEF, diagram is shown in Fig 1, in which each field of Author, Project, Date,
Rev, Node, and Title must be filled. Each activity must be named and numbered and must have
at least one control (arrow entering the top) and one oufput (arrow leaving the right side of a hox)
Each data arrow must also be labeled. The function is viewed as a transforming its inputs (arrow

entering the left side of a box) into outputs under the guidance of its controls. Each function in

(N1

AUTHOR: DATE: 2/26/91 READER:

Min-fuh Shyong
PROJECT: AFIT Tasks REV: 1.0 DATE:
instructor advice
books _ ideas term
source Read Write >
1 2 paper
i
lecture
| Listen
3
NODE: Al TITLE: Term Paper NUMBER:

Figure 1. Example of a IDEF, Diagram

this diagram can be a parent diagram in the decomposition of its child diagrams. More examples

and IDEFg syntax will be introduced in chapter 2.

Data Dictionary. The phrase data dictionary is almost self-defining. The data dictionary
is an organized listing of all the data elements that are pertinent to the system, with precise,
rigorous definitions so that both user and systems analyst wili have a common understanding of all
inputs, outputs, components of stores, and intermediate calculations (30.189). A data dictionary

is a technique that usually accompanies one of the graphical modeling techniques (27:82-83).

SAtool. SAtool is a C-based CASE tool for assisting the software engineer in the require-
ments phase of the software development life cycle (13:6-1). SAtool’s graphical language is based
on IDEY, which, in turn, is based on the SADT. SAtool allows the user to perform requirements

analysis by developing IDEF, diagrams and associated data dictionaries.

SAtool-IL. The essential model and graphics editor model are being develop as an object
based Ada CASE tool (SAtool II) using the abstract data model as the requirements document
(16)(28). The development and implementation of an object oriented design {OOD) in Ad- for the
essential date model is achieved. SAtool-1I differs from its predecessor SAtool, in that SAtool-Il is
to be fully implemented in Ada programming language and more functions, like a syntax checking

expert system are expected to be completed in Ada as well.

SAtool-1I is designed for individuals who are familiar with structured analysis and SADT. In
order for SAtool-1I, or any interactive analysis tool, to be effective, it must be able to capture the
data information entered by the user and stored it into some type of database. Thus all the input
information will be examined by the tool system, prompt the user when ambiguities happen and
create a complete data dictionary without further manual inputs. SAtool-II stores data derived
from the SADT diagramns in a standard file format which can be read by the common database
interface. The purpose of this stored standard file is for the future compatibility with as many

database tocls in existence as possible (17).

Exp~rt System. The first step in solving any problem is defining the problem area or
problem domain. This consideration .s just as true in artificial intelligence (AI) as in conventional

problem solving. According to Luger, the attempted definition of Al is:

Artificial intelligence may be defined as the branch of computer science that is concerned
with the automation of intelligent behavior. Al is part of computer science and, as such,
must be based on sound theoretical and applied principles of that field These principles
incluce the data structures used in knowledge representation, the algorithins needed to
apply that knowledge, and the language and programming techniques used in their
implementation,

However, this definition suffers from the fact that intelligence itself is not very well

defined or understood. Thus the problem of defining artificial intelligence becomes one

of defining intelligence itself. (18:1)

Because of the mystique formerly associated with Al, there is a lingering tendency to still
believe the old adage “It’s an AI problem if it hasn’t been solved yet” (10:1). Professor
Edward Feigenbaum of Stanford University, an early pioneer of expert systems technology, has

defiued an expert system as “.. an computer program that uses knowledge and inference procedures
p g

to solve problems that are difficult enough to require significant human expertise for their solution.”

That is, an expert system is a computer system which emulates a small aspect of the decision-
making ability of a human expert. The term emulate means that the expert system is intended to
act as much as possible respects in the oroblem domain like a human expert. An emulation is much
stronger than a simulation which is cnly required to act like the real thing in some respects (10:1).
Internally, the expert system consists of two main components. The knowledge-base contains the
knowledge with which the inference engine (algorithm) draws conclusions. These conclusions are
*he expert system’s responses to the user’s queries for expertise. As more knowledge is added to
the intelligent assistant, it acts more like an expert (matching patterns is a logical fashion following
the experts explicit reasoning that has been programmed). An expert’s knowledge is specific to one
problem domain as opposed to knowledge about general problem-solving techniques. General
problem domains are medicine, finance, science or engineering and so forth in which an expert can
solve specific problems very well. The expert’s knowledge about solving specific problems is called

the knowledge domain (data structure and control structure) of the expert (10:3).

Similarly, according to Luger:

An _xpert system is a knowledge-based program that provides “expert quality” solutions
to problems in a specific domain. Generally, its knowledge is extracted from human
experts in the domain and it attempts to emulate their methodology and performance.
As with skilled humans, expert systems tend to be specialists, focusing on a narrow
set of problems. Expert systems neither copy the structure of the human mind nor
are med hanisms for general intelligence. They are practical programs that use heuristic

{
Facts | ISP Fe—————— J
—l = — 8 |
User !
Fo—=—==- e i !
§ }
emmm e o - \ Inference Engine '
T Expertise b . 3

Expert System

Figure 2. Basic Concept of an Expert System Function

strategies based on a certain set of algorithms developed by humans to solve specific
classes of problems (18:291)(23).

A concept figure of an expert system function is shown in Figure 2.

The process of building an expert system is called knowledge engineering. Knowledge
engineering refers to the acquisition of knowledge from a human expert or other source and to the
art and science of crafting these expert systems(12:1-2). It applies to all levels of the software life
cycle. But for the reasons mentioned earlier, it emphasizes the requirements phase. An expert

system has the following performance characteristics:

o High perforinance. The system must be capabie of responding a\ a level of competency equal
to or better than an expert in the field. The term better means that the system will never

forget things, getting tired, make mistakes, like a human expert does.

¢ Adequale response fvme. The system must also perform in a reasonable time, comparable to

the time required by an expert to reach a decision.

o Good reliability. The expert system must be reliable and not prone to crashes (giving false,

slow or no results) or else it will not be used.

Human
Expert

L

Dialog

Knowledge

Engineer

Explicit Knowledge

Knowledge-Base —
of
Expert System

Figure 3. Development of an Expert System

o Understandable. The syst.. should have an explanation capability (pattern matching) in an

equivalent way that human experts can explain their reasoning. (10:6-9)

The general stages in the development of an expert system are illustrated in Figure 3.

Expert System Tools. An expert system tool is any computer language or programming
system that supports the encoding of domain knowledge and provides one or more inference tech-
niques (search-methods; select, match, act) to apply the knowiedge in order to solve the problem

(16:5). The structure of a Rule-Based Expert System is illustrated in Figure 4.

CLIPS (C Language Integrated Production System) is an expert system tool, CLIPS/Ada,
the same tool as CLIPS but written entirely in Ada, is selected for this effort. Since CLIPS/Ada

is the only expert system tool available that was written in Ada programming language. As with

10

INFERENCE
KNOWLEDGE ENGINE WORKING
BASE MEMORY
(RULES) (FACTS)
AGENDA
EXPLANATION KNOWLEDGE
FACILITY ACQUISITION
FACILITY
USER
INTERFACE

Figure 4. The Structure of a Rule-Based Expert System

most expert system shells, CLIPS/Ada already provides an inference engine and employs a forward
chaining reasoning method (1:128). It is already implemented and interfaced into the SAtool II

Essential Subsystem(16).

History

The original SAtool was developed by Steve Johnson (13). SAtool is an interactive computer
aided software engineering (CASE) tool that permits the creation and editing of IDEF diagrams
based on the Structured Analysis and Design Techniques (SADT?). In fact, SAtool is sometimes
referred to as a ‘SADT editor’. Implemented on a Sun-3 in the C programming language, SAtool
created both a graphics file and a data dictionary file; however, no syntax checking of the output
was provided. The user would have to manually check the diagrams and is highly likely to neglect

a mistake.

2SADT is a trademark of SofTech, Inc.

D. H. Jung explored the idea of performing syntax checking on the SAtool output(14). His
research focused on the prototype development of an IDEF, syntax (language) validation tool
which is an expert system to perform a syntax validation of the IDEF, diagram. The IDEF,
syntax is formalized by converting SADT diagram constructs to predicate logic facts, and defining
grammatical rules as predicates also. The research describes how both a box and an a-row are
transformed to predicate logic. A C program called a translaior translates the IDEF, diagram
features into a formal predicate logic description that is ‘readable’ by the expert system. The
expert system includes a backward chaining inference engine - BC33, which uses a goal driven
inference chain supported by Prolog-1. A chain in the goal driven inference process is a sequences
of steps traversed from a hypothesis back to the facts which support the hypothesis(10:159). BC3
requires facts (knowledge) to be represented as three-element lists of the form [Object, Attribute,
Value] which are normally referred to as QOAV triples. Although the expert system is successful in
performing tne syntax validation of the IDEF, diagram, the rules only check a limited number of
IDEF, features. In addition, full integration with SAtool is not achieved, since the fact file must

be transferred to a separate computer, the Z-248.

Continuing research on the integration of an expert system with SAtool, Inteak Kim generated
an expert system implemented in Quintus Prolog on the SUN-3(15). The entire process of IDEFg
diagram creation, editing, and error checking is performed on the SUN-3, but the user is again
required to run two separate processes: one for SAtool and one for Quintus Prolog, Tven the rule
base of the expert system is extended to include rules for several additional features of the IDEF,
language, and the need for the separate microcomputer to run the expert system is also eliminated.
However, fully transparent integration is still not achieved due to software compatibility problems
between the C language and Quintus’s version of Prolog. Besides, the data in an [0 A V] tuple is
limited to have only three fields introducing extra complexity in mapping the IDEFg syntax to the

expert system rules.

3BC3is a Pro-log backward chaining expert system shell developed by F. M. Brown.

12

Overlaping with the work of Kim, Terry Kitchen and Jay Tevis jointly designed the essential
model and graphics editor model for the Ada based SAtool. The research goal was to develop
an object based Ada CASE tool (SAtool II) using the abstract data model as the requirements

document (16) (28).

SAtool-II has shown that an Ada based expert system to check the syntax of an IDEF,
diagram is feasible as a part of that system, thus the effectiveness and efficiency of the developing
tool is to be evaluated. At present, a generic Ada based expert system tool (shell), CLIPS/Ada is
already implemented and interfaced into the Essential Subsystem, where the subsystem is the part
of SAtool II that defines the data structure of the user input data. The visibility of the CLIPS/Ada

with the Essential Subsystem is illustrated in Figure 5(16).

Problem Statement

The feasibility of using an Ada based expert system has been shown in SAtool II. However,
the translation of a user’s hierarchical IDET diagram to a facts file is not compleie, this file can be
loaded into the working memory together with the CLIPS/Ada rules to check its syntax. Also, the
rules for checking the syntax are incomplete. Thus, the system is not able to perform the function

of checking the syntax information in a user developed hierarchical IDEF, diagrams with SAtool

iL

This research investigation focuses on continuing the fact translation procedures, expanding
SADT syntax checking rules and making the Ada based expert system of the SAtool II to a testing
phase. Further investigations could be made to improve its efficiency or reevaluate its applicability

to the current project.

Assumplions

Several assumptions must be made at the outset of this research.

Error

Essential
Handler

Data -
Element g::s;t;(‘),ﬁcal Calls Consist-
Manager M Y Relation of Rele.ion Relation
anager

Manager Manager

Essential
Fact
jlities

Project

Manager

CLIPS
Working LEGEND
Memory fossential JO
Interface
Q Object
Visibility
direction

Figure 5. Clips/Ada Visibility with Essential Subsystems

14

1.

CLIPS/Ada is an Ada version of CLIPS which has all the original functionality of CLIPS
with a few exceptions(16). CLIPS/Ada has already implemented as a part of the essential
subsystem as th: data driven, forward chaining inference engine for the Syntax Checking

Expert System.

. Concurrent research work with the drawing data model and related SAtool Il implementation

issues initiated by (28) can proceed at a pace that does not hinder this concurrent research.
The drawing data model is expected to implement the screen layout and drawing functions

to be integrated with the essential model.

. Users and/or researchers planning to utilize this work, must be familiar with the concepts of

modeling software requirements using IDEFg, SA, or SADT.

Research Approach

6.

The following steps outline the intended research approach:

. Analyze the IDEF, diagram syntax. “Translate” all the information that might appear in

the structures including illegal ones into a facts knowledge format that can be accepted by

CLIPS.

. Complete the SAtool IT Ada program to perform the functions in (1) to retrieve all the facts

stored in the essential model.

Complete the Ada program to restore all the facts back to the essential data structure.

. Complete the IDEFy CLIPS rule base that checks the facts that are translated from the users

diagrams and subsequently loaded into working memory of CLIPS.

. Demonstration programs will validate that the CLIPS expert system and fact translation

procedures works.

Selection and use in ES application.

Materials and Equipment

The essential subsystem of SAtool II is already implemented. The CLIPS/Ada is also inte-
grated into the subsystem. The target environment for the integration to occur is the SUN-4 work-
station running a version of Berkeley Unix OS. Several workstations are readily available within
the Department of Electrical and Computer Engineering to accomplish this research. The SUN-4
is the chosen platform, because it is the most readily available workstation with the X-window vs

sunview graphics capability within the department.

Scope and Limilations

1. The development of subprograms within the name subsystem will translate information stored
in the essential data model data structures into facts suitable for loading into the working

memory of the CLIPS expert system shell.

2. The development of subprograms within the subsystem will restore all the facts from the facts
file and load them back to the essential data model data structure. Thus each facts file could

be separately stored, modified, and perform syntax checking in the essential model.

3. The development of an independent rules file will perform the syntax checking functions. This

is to be inferenced by the CLIPS/Ada already integrated into the essential model.

4. The integration of the SAtool II subsystems with the drawing model of SAtool II.

Sequence of Presentalion

This thesis is designed to be organized into 6 chapters. A short introduction to the IDEF,
language and all the related terms are explained in chapter 1. A history of this research and its

feasibility is discussed in chapter 2, literature review.

Chapter 3 presents a review of the requirements for the subsystem, the essential model spec-

ifications and data structures, the expert system rationale and examples. The facts translator

16

requirements and the relationship hetween the facts in a file with the working memory, and the
facts in the working memory with the expert system rules are also presented. In addition, the

syntax checking expert system requirements will be specified.

Chapter 4 presents the design of all the required subsystems and files to be implemented into

the essential subsystem.

Chapter 5 illustrates the completion of the design and also includes the implementation,

compiling and testing of the subsystem.

Finally, Chapter 6 presents a summary of the thesis work plus some conclusions and recom-

mendations.

II. LITERATURE REVIEW

Introduction

The final goal of this thesis investigation is to design and implement an Ada based expert
system formulation as a subsystem for checking the syntax of IDEF, diagrams derived from the
essential model of SAtool II. Since the IDEF, language (20) is implemented by SAtool 11, a detailed
overview of the language is presented in this chapter and a hierarchy of IDEF, example diagrams
are shown. Also the basic ideas of CLIPS is introduced. An example along with the behavior of

CLIPS execution is provided in Appendix A.

The process of translating the IDEFo models into facts formats from their SAtool II data
structure is introduced. It is initiated by (16). But most of the functions are not implemented.

How those facts are to be used by the CLIPS expert system rule base is explained.

Finally, the Syntax Validation of SAtool II will be explained.

IDEF,

The main concern supporting structured analysis (SA) is the decomposition of a complex
problem into parts that can be more easily understood. This is facilitated by a hierarchical ap-
proach, called functional decomposition, in which a major problem is broken down into its major
components, then each of them is in turn divided into its major pieces, and so forth. IDEFg syntax

is a derivative of the SADT syntax and is used for software requirements analysis (20).

Although a decomposition can be based on data or process, IDEF, is based on the analysis of
processes or aclwties. The decomposition is reflected through a series of Function Diagrams and

corresponding facing page text, as shown in Figure 7 through Figure 13.

An IDEF; system model consists of a series of hierarchically related function diagrams,
along with text descriptions and other supporting elements. The hierarchy of drawings

18

is formed by starting with a single function representing the system being modeled,
and successively decomposing each function into its major subfunctions. Thus at any
given level, a function diagram represents a single function of the next higher level,
and presents the major subfunctions of that parent function, along with the interfaces
between those subfunctions.(20:7)

The overall objective of using IDEF, diagrams is the creation of a system’s software require-
ments model. Any model is an abstraction of reality, with many details omitted and only the
relevant ones included. This model serves two purposes: 1. to develop a detailed understanding of
the user‘s requirements; 2. to provide a structured documentation of the software requirements for

the use in the software design stage of the life cycle.

As mentioned earlier in Chapter 1. The most important item of decomposition in IDEF,
is a function, which is represented by a rectangular box. Since a function represents a process
or action, and is identified by a name that starts with a verb. A box might be the parent of its
decompositions. An IDEF, model of software system requirements is constructed by starting with
an A-0 diagram that consists of a single box and a number of arrows. In the highest level diagram,
the single box represents the entire system and might be decomposed to any level of details. Each
box on a diagram may be decomposed into a diagram of its own. It is equivalent to the idea
of “context diagram” as mentioned in (30:339) which is a part of the DFD modeling technique.
The context diagram highlights several important characteristics of the system similar to the A-0

diagram:
¢ The people, organization, or systems with which the developed system communicates. These
are known as terminators.

o The data that our system receives from the outside world and that must be processed in some

way.

o The data produced by our system and sent to the outside world.

19

Customers orders Printers

reprint
orders

arriving books

invoice

Book Order
System

Credit Status

sales reports

invoice

Management

Accounting

Figure 6. Components of a Context Diagram

o The data stores that are shared between our system and the terminators. These data stores
a.c either created outside the system and used by our system or created by our system and

used outside the system.

o The boundary between our system and the rest of the world.(30:339)

The concept of a context diagram is shown in Figure 6.

Even the ides of IDEF, diagram and context diagram are equivalent. Each function box in an
IDEF, diagram must have at least one control data and one output data, the input and mechanism
numbers are optimal. Those are not shown in the context diagrams. The resulting functions, data
manipulations of the model represented in IDEF, diagrams is more explicit than that of the context
diagrams. Which means easier to understand and implement. Thus IDEF,; diagrams are selected

for this discussion.

In a hierarchy of IDEF, diagrams, Level A-0 (pronounced A minus zero) Diagram is also

known as the environment model, as it represents the interface between what is being modeled or

20

analyzed and its environment. It is used to define the scope of the system. In most cases, A-0 is

the highest level considered.

Since the A-0 diagram lacks the necessary detail to describe the requirements and functions of
the system being developed, it must be decomposed into lower level diagrams forming a hierarchy,

where each lower level in the hierarchy reveals greater detail.

Figure 7 shows the hierarchy of the example IDEFy model for “Control Elevator”. Therefore,
each diagram in the model, with the exception of the A-0 diagram, is essentially a functional de-
composition of a box in a higher level diagram. The box in the higher level diagram is appropriately

called the parent box of the diagram.

The first actual level of decomposition is the “Level A0 Diagram,” a separate drawing which
represents the same level of analysis as the A-0 diagram, but which shows the major subfunctions
of the system being investigated. Since it is the same level, the external interfaces on this drawing
should be the same as in the A-0 diagram, in addition to the interfaces between the subfunctions.
Each box on the diagram is given an integer number, beginning with “1,” but the actual function
numbers are “Al, A2,..” at this level. The numbers are relative to each particular box and the
actual function number of a box is its integer appended to the function number of its parent. It is
used to track consistency between levels.(30:24-30). Furthermore, each and every box in an IDEFg
diagram must have at least one control arrow and one output arrow. No restrictions exist on the

number of input or mechanism arrows permitted.
For more details concerning about the IDEF, modeling technique refer to the manual (20).

Figure 8 illustrates a single IDEF, diagram that represents the essential model for an elevator
scheduler and controller. Figure 9 through 13 shows the decomposition diagrams simplified and
translated into IDEF, diagrams from (30:631-652) as an example. Since the functions of creating

a data dictionary has not been implemented for the essential model, so the discussion for that is

omitted here.

21

Parent
[Activity

!
!
]
!
1
!

Child

Activities

—
— —
T T N More General
\
? \
\
A-0; \
\

More Detail

A12

A26

Figure 7. Hierarchy Diagram for ‘Control Elevator’

22

AUTHOR: Min-fuh Shyong

DATE: 2/26/91

READER:

PROJECT: Control Elevator

REV: 1.0

LATE:

passenger

summons indication

floor sensor

door sensor

system control

requests

overload

sensor

Control

Elevator

control signals
—-—_—»

floor motor drive

door motor drive

NODE: A-0

TITLE:

Control Elevator

NUMBER:

Figure 8. A-0 Essential Model Diagram for ‘Control Elevator’

23

AUTHOR: Min-fuh Shyong DATE: 2/26/91 |READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

passenger Store a
; 0Or sensor
Request
requests
1 door sensor
received system control
request Elevator R
signals
Control
2
overload sensor Schedule control
Elevator >
3 | signals
floor motor
dri door motor drive
rive
NODE: AO TITLE- Schedule Elevator NUMBER:

Figure 9. AO Diagram for ‘Control Elevator’

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:
PROJECT: Control Elevator REV: 1.0 DATE:
summons indication
passenger Manage elevator
Summons
status
requests Request 1
Manage received
Destination
request
NODE: Al TITLE: Manage Request NUMBER:

Figure 10. Al Diagram for ‘Control Elevator’

25

AUTHOR: Min-fuh Shyong

DATE: 2/26/91 |READER:

PROJECT: Control Elevator

REV: 1.0 DATE:

summons indication

klevator
Etatus
destination
up/down Control request Store
p . q D destination
Request est
1 Request 2
Clear . .
stopped Displa; received
il Destination completed i 5
Request
3 destination 4 request
NODE: Al12 TITLE: Display Request NUMBER:

Figure 11. A12 Diagram for ‘Control Elevator’

AUTHOR: Min-fuh Shyong DATE:02/26/91 READER:
PROJECT: Control Elevator REV: 1.0 DATE:
summons
floor sensor
indication
keceived
Fequest destination
Check direction Monitor arrivals
———— iDestination Arrival
1
P
Manage floors Check confirmed
Floor .
Arrival
Arrival 3 4
{
Start
Stop start/ Sort signals
-
Control 5 |stop Signals
floor motor drive

NODE: A2 TITLE: Manage Arrivals NUMBER:

Figure 12. A2 Diagram for ‘Control Elevator’

AUTHOR: Min-fuh Shyong

DATE: 02/26/91 |READER:

PROJECT: 50400l Elevator REV: 1.0 DATE:
confirmed
/ compared
. sequenced
start/ Compare signals Reorder signals
Signal s
stop ignals equence
ealier
signals
Backup backed Store later
Signals Sorted signals
3 signals 4
A
stored
signals
Send
e
Signals signals
floor motor drive
NODE: A26 TITLE: Sort Signals NUMBER:

Figure 13. A26 Diagram for ‘Control Elevator’

28

Introduction to CLIPS

To my knowledge so far, there are many practical aspects of building expert systems which
must be learned by doing. Those aspects include, to say the least, the ability of defining a problem,
the knowledge to approach the solution of that problem, the proficiency in using the expert system
tools, the ability to reason under uncertainty, and finally the skills to implement that knowledge into
an expert system. So far, building an expert system is much like writing a program in a procedural
language. We have learned a lot of theories and algorithms for procedural languages at AFIT. But
knowing how an algorithm works is not equivalent to being able to write a procedural program to
perform that algorithm. Due to the fact of the complexity of the problem, it is not always possible
for a software designer to build a system that will reflect all the intuitions the designer intended
to implement. But the final product should be maximized on its functions in accordance with
the understanding of the problem and the design techniques of the software developer. Similarly,
capturing an expert’s knowledge is not equivalent to building an expert system. For this reason,
practical experience in using an expert system tool is invaluable in learning about expert systems.
In addition to the inadequacies mentioned in Chapter 1 for using [O A V] triples to represent facts
of the IDEF, model diagrams. CLIPS, which means C Language Integrated Production System is

introduced here. The basic elements of CLIPS are (10:373):

1. fact-list: global memory for data. Each fact is a chunk of information in CLIPS. A fact

consists of one or more fields enclosed in matching left and right parentheses.

2. knowledge-base: contains all the rules. Rules can be typed directly into CLIPS or they can

be loaded in from a file of rules created by an editor. Each rule is of the form:

(defrule name-of-the-rule
LHS-of-the-rule (conditions)
=>

RHS-of-the~rule (actions)

29

Where LHS
=>
RHS logically implies:

if LHS(Conditions)... THEN RHS(Actions).... All the LHS conditions are logically and’ed

together.

3. inference engine: controls overall execution, applying all the rules to the fact-list and derive

expert results. It can be a combinatorial search process.

CLIPS is a forward chaining rule-based language that has inferencing, pattern matching,

state searching, and representation capabilities. The design of CLIPS is such that rules only match

facts that have been entered after the rules. Thus newly entered rules will not match the facts that

are currently on the fact-list. Only new facts that are entered will be seen by the rule. This means

that a rule can only be activated by facts that are asserted after the rule is entered, thus during

the execution, after new facts are asserted as a result of some rules firing, then it might activate

existing rules that were not matched before (10:373-387).

Essential Model of the IDEFy Abstract Data Model.

The subsystems of the essential model which are already partially implemented but not com-

plete include:

e The necessary data structures to hold the essential data model state information.

o The storing and restoring of essential data model state information which is 1n the form of

CLIPS/Ada facts.
o the capability to create one or more data dictionary entrics.

o The capability to check the syntax of an IDEF; model by means of a rule base consisting of

IDEF, syntactical checking rules(16).

30

Facls utilities. The storing and restoring of essential data model state information in the
form of CLIPS/Ada facts is performed by a separate file Essentral_Faci_ Utilities. The file is an
“iterator” performed by a set of operations that iterates through the data structure of the essential

model(3:52-62).

Through precisely defined formats of the output file, the informations from the entire essential
data model (i.e., the project) is retrieved and stored as a CLIPS/Ada readable file format:
(attribute object value, value,...)

Where attribute defines the type of fact, object is the actual name of the data, and values are a
set of descriptions of the object with unlimited length but each value must be separated by one or
more spaces; i.e., (project-name Project_Name) where capitalized identifiers in the parenthesized
fact file represents informaticn derived for the data structure of the essential model. Since each
project is stored in the form of facts file. A set of restore functions is also needed to restore the

facts format back into the IDEF, essential data model, thus we don’t need to regenerate the model

again.

Of particular interest is the two different groups of facts: syntactical facts, and stat repre-
sentation facts. Syntactical facts are those sent to the CLIPS working memory for syntax checking,
whereas state representation facts simply represent the sate of the IDEFy model. The reason for
this is that the syntax checking rules does not need to know the detail of some data value, simply

to check if it is there.

CLIPS Working Memory Interfacc and Rules File. The CLIPS Working Memory Interface
provides the interface for the Essential Subsystem to the CLIPS/Ada expert system. It is the only
package in SAtool II that has visibility to the CLIPS/Ada cxpert system operations. When the
check syntax option is selected by the user in the essential model, the facts file and another separate

rules file are loaded into CL:PS Working Memory and CLIPS/Ada initiates the logical sequence

31

to show the syntactical checking results of the created IDEFy model. It is an interface designed by
(16).

The rules file is to be expanded and tested as an integral part of the essential model.

Ezpert Systems.

In the process of building an expert rule system using an expert system shell, we are following

a step by step method of building a program(10:419).

¢ First: pseudo rules were written using English-like text.

o Second: the pseudo rules were used to determine the types of facts that would be required.
Templates describing the facts were designed, and the initial knowledge (facts) was coded

using these templates.

¢ Finally: the pseudo rules were translated to CLIPS rules using the fact templates as a guide

for translation.

‘Toshow how this works, an example from (10:413-419) was introduced and its behavior during

CLIPS execution is shown as explained in Appendix A: CLIPS BEHAVIOR IN THE BLOCKS
WORLD.

Integration of Ezperl Systems with CASE Tools.

Through examining and understanding the projects developed from different perspectives, the
strengths and weakness of each project can be identified for future reference. Today, expert systems
are built on a variety of software and hardware platforms. Because of these various platforms,
AFIT, academia, and industry have begun hoth theoretical and actual development of systems that

integrate CASE tools with expert system. Each of the following projects have been implemented

with differing degrees of success.

32

SAtool with Syntaz Validation.

As mentioned previously, SAtool (13) is simply a graphical editor and provides no advice or
assistance to the user as the IDEF, diagrams are being drawn. In other words, the user of SAtool
could not determine if the finished diagram is consistent with the IDEF, graphical language except
by tedious and time consuming manual inspection. To improve this, Jung initialized the idea of
syntax checking ability with SAtool in his MS thesis in 1988 (14) His research focused on the
prototype development of an IDEF, syntax (language) validation tool which is an expert system to
perform a syntax validation of an IDEF, diagram. The IDEF; syntax is formalized by converting
the syntax to predicate logic facts. The research describes how both a box and an arrow are

described in predicate logic.

The graphical feature BOX is translated into the predicate BOX(x), which means: x

is a BOX. In the case of the ARROW, it is translated into the predicate ARROW(x),

which means: x is an ARROW (16:28)

There are two steps to the syntax validation tool (16:28) First, a C program was devel-
oped called a translator to translate the IDEF, diagram features into a formal description that is
‘readable’ by the expert system. The expert system is a backward chaining expert system-BC3!,
however, required facts had to be represented as three-element lists of the form [Object, Attribute,
Value] which are normally referred to as OAV triples. The IDEF; diagram representation is stored
in multiple C data structures, and the translator program creates a file of facts based on the

information in those structures (16:28)

The second and final step of the syntax validation tool is the syniaz checker (16:28) The
syntax checker’s purpose is to check the IDEF, diagram (now represented as QAV triples) for
syntactical errors. the syntax checker is, in essence, the expert system. Syntax rules such as “Each

box must have a name” and “Each arrow must have a label” are converted to if....then constructs

1BC3 is a Prolog backward chaining expert system shell developed by F.M. Brown.

33

in a form acceptable to BC3. The syntax checker, when executed, produces error messages for the

designer to review and take corrective action.

The research, however, was limited in scope. All the features of an IDEF, diagram are not
addressed. Plus, a transparent integration of SAtool and the syntax validation tool was not achieved

(i.e., 2 manual step remained).

Both the aforementioned integration problem as well as expanding the syntactical checks
that the expert system performed were resolved(16:29). The number of IDEF syntactical features
checked by the expert system are expanded (16:29). To resolve the integration problem, an attempt
was made to integrate SAtool with a Quintus Prolog implementation of the syntax validator (the
expert system). The “new” syntax validator is simply the expert system shell BC3 with changes
necessary for it to run under Quintus Prolog. Unfortunately, compatibility problems between Quin-
tus Prolog and the C programming language result in a failure to achieve a transparent integration

of the expert system with SAtool (16:29).

Currently, a more capable CASE tool, SAtool II is being developed in the Ada programming
language and includes an Ada based expert system using CLIPS/Ada. Terry and Jay continued the
effort of developing the Essential model and Drawing Model of SAtool II (16) (28) As mentioned
earlier, the Essential Model designed and implemented by Terry needs to be expanded to complete

its expert system functions.

Spectfication-Transformation Ezpert System (STES). At the University of Illinois, Tsai and
Ridge have developed the Specification-Transformation Expert System (STES) which is an expert
system that they have integrated with the CASE tool Teamwork developed by Cadre Technolegies
(29:34). Teamwork is used to create DFDs. In addition, Teamwork runs on an Apollo worl >tation
platform and includes a built-in Access tool which allows users to access the underlying data

structures that contain the DFD description. In this case, a C++ program was written by Tsai

and Ridge to access the DFD description (29:34). By implementing the STES in OPS5, which can

also run on Apollo workstations, transparent integration of Teamwork and STES is achieved.

After the requirements analysis phase of the software development life cycle is completed,
STES can be used in the next step — the design phase. STES assists the software engineer with
the design phase by transforming the DFD into a structure chart (16:2). The STES is used to
examine the C++ representation of the DFDs, extracts the salient features, and converts them
into production rules. The STES then “applies inference to identify and transform the efferent,
afferent, and transformation-centered components of the dataflow diagram into a first-cut structure

chart” (16:29-30).

Visible Analyst Workbench. Visible Analyst Workbench ? is an IBM-PC based CASE tool
marketed by Visible Systems Corporation that contains rules to perform error checking of DFDs
(16). According to the product documentation, the CASE tool portion called Visible Analyst
allows the user the choice of two different styles in DFD construction: the Yourdon/DeMarco
Method 2 DFD or the Gane and Sarson Method DFD (16-29-30). Unlimited levels of DFD process
decomposition are also supported. Regardless of the style chosen, however, the rules portion of the

tool called Visible Rules can check the diagram for proper balancing, naming conventions, etc (16).

The Visible Rules are executed without leaving the DFD which means transparent integration
between the CASE trol portion and the “expert system” portion is achieved. Although the word
rules implies a rule-based expert system is used, the proprietary nature of the product does not
permit the disclosure of whether the rules are implemented algorithmicaily or by an expert system

paradigm.

2Visible Analyst is a registered trademark of Visible Systems Corporation.
3The correct reference should probably be YSM 1.0 (3).

Summary

This chapter provides a review of several subject matter areas that directly relate to this
investigation. More detailed IDEF, syntax was explained. Also the basic structure of CLIPS was
stated. The Essential Model of SAtool Il is described along with its subsystems to gain insight into
an expert system functions. An actual example is provided in Appendix A to show the execution
of CLIPS program. Thus a user of SAtool II unfamiliar with CLIPS execution might be able to
understand the behavior of the expert system through the study of this example. Presented are the
format of facts and rules and the behavior of applying rules on those facts in the working memory

during execution.

Several examples concerning the integration of CASE tools with expert systems are also
reviewed, since this research calls for a similar integration. Clearly, all attempts at integration do
not succeed. To improve the chances of successful integration, information from successful projects
should be obtained and used as a foundation for further research. The integration of IDEF, syntax

checking capabilities in SAtool II using an expert system is the key concern of this research.

36

III. REQUIREMENTS ANALYSIS

Introduction

This chapter presents a review of the requirements for the subsystem to be integrated with
SAtool I1. First, the IDEF, Dragram Translatoris implemented as a separate package and Essential
Fact Utilities is used to translate any IDEF, diagrams drawn by SAtool II into a set of CLIPS
readable facts format. The second category is to design and implement the IDEFy Syniaz Ezpert
System which is to be an application of a knowledge-based expert system. It is also a separate file

having ac:ess only to the CLIPS working memory in the essential model.

This chapter presents the considerations related to the development of the IDEF, Diagram
Translator requireinents, IDEFy Syntax Expert System requirements, formalization criteria, the

expected results, and validation test requirements.

Consideration of the Previous Studies

As mentioned in (15), the syntax checking ability was provided to find any inconsistencies
for boundary arrows with the parent IDEF, diagram. But as mentioned earlier, Object, Attribute,
Values data structure were used to represent the IDEF, diagrams known as OAV triples. Also,
compatibility problems between Quintus Prolog for syntax checking, and the C programming lan-
guage for IDEF, diagrams translator, resulted in a failure to achieve the transparent integration
of the expert system with SAtool. Thus the tool developed in (15) must currently run the systems
separately. This means the facts translated from the IDEF, diagrams must be generated and then

the inference process could begin for the syntax checking abilities.

Here, our purpose is to develop a system based on Ada. The translator is to be written in Ada
and the expert system tool is also to be in Ada, CLIPS/Ada. Once the subsystems are integrated

into a whole, the system should provide a CASE tool environment for SAtool 1I.

37

Facts Translator Requirements-Essential_Fact_Utilities.

Six different mechanisms or manaeger mechanisms are already implemented in the essential

model for the seven different object classes. The six manager mechanisms are:

1. Activity Manager

2. Data.Element_Manager

3. Consists_Of_Relation-Manager
4. Historical_Activity.Manager
5. Calls Relation_Manager

6. ICOM_Relation.Manager (16:64)

The IDEF; Diagram Translator is implemented as a separate file to be completed and integrated

with the Essential Subsystem. It must have the following two functions:

e Retrieve procedures

e Restore procedures

Retrieve Essental Data Model Information. The information that is stored in the manager
abstract state machine represents the essential part of an IDEFy model. This information must be
extracted from the manager for output to a file or for input to the CLIPS/Ada working memory
for syntax checking. This is accor plished by a package containing a serious of Retrieve (Activily,
Data_Element ...ICOM_Relation) Facts procedures. Those procedures first examines the ‘Type
Facts Flag’. Based on the flag setting (T or F), the procedure retrieves one of two different sets
of facts and inserts them into a Fact_Manager which is an instance of the Fact Buffer. Package. If
the flag is true, only facts for the expert system arc inserted in the Fact_Manager. If the flag is
false, only the facts necessary to permanently store the state of the essential data model (i.e., the

IDEFy model) are inserted into the Fact_Manager. This procedure is invoked by a chent program

38

whenever the user s.aves the project he/she is working on, or when the user wishes to check the
syntax of the project (i.e., the current IDEFo model) The required format for input to the CLIPS
working memory is CLIPS facts. The formats are strictly defined in the procedure through Ada
string type definition in accordance with the data type defined in the aforementioned six object

class managers (16).

Restore Essential Date Model Information. After each Retrieve procedure, the Restore pro-
cedure for the same object class accepts as input a buffer of facts representing state information.
These facts are then Restored into the object class manager by this procedure. This procedure is
normally executed as one of a sequence of events in the initialization of SAtool II when a previous
project is loaded from disk. Thus, the user could get all his work back into the Essential Model for

further rechecking or modification without having to retype everything.

The Module diagram for Essential_Fact_Utilities is illustrated in Figure 14 (16:121).

CLIPS_Working.Memory_Interface.

This package provides the interface from the Essential Subsystem to the CLIPS/Ada expert
system shell. It is the only package in Satool II that has visibility to the CLIPS/Ada expert system
operations. Once all the Retrieve procedures are completed, they will be included in the interface

package to be retrieved by the Fact_Buffer_Package.

The Module diagram for Clips-Working.Memory Interface is illustrated in Figure 15 (16:120).

Essential_10.

This is a package that necessary for the operation of SAtool I to store essential data inodel in
a file and to Joad essential data model information from a file into the managers. Within the scope

of this thesis effort, only the retrieve procedures for those seven object classes are to be added, facts

39

Essential Fact Utilities

- i
\.
Consists.Of_Relation Manager

[

ICOM_Relation Manager

i

Calls_Relation.Manager

i

Environment Type

d

Activity Manager

i

Data_Element.Manager

]

Historical Activity Manager

]

Project Manag

Q
-

i

Figure 14. Module Diagram for Essential _Fact_Utilities

Clips_Working Memory.Interface

Essential Fact Utilities Embeded Clips (a CLIPS/Ada package)

/

Environment Types

Other CLIPS/Ada packages

Figure 15. Module Diagram for Clips-Working_Memory_Interface

41

Esential IO

Essential Fact_Utilities

Environment.Type

Figure 16. Module Diagram for Essential 1O

created from each object are given a fact name for for both the expert system and the Essential

Model. For instance, Retrieve ICOM_Facts in the Essential IO package will create a facts file as:

(deffacts icom-facts
(icom-attribute Name value value value)

()

The module diagram for Essential_10 is illustrated in Figure 16 (16:119).

Syntaz Checking Ezpert System Reguirements

The IDEF Syntax Expert System should allow the user to check the hierarchical activity
IDEF, syntax and the boundary IDEF, syntax in any diagrams using the facts file created by the
retrieve procedures. CLIPS/Ada is interfaced with the essential subsystem and has been proven
to be effective. A chain that is searched or traversed from the initial state to the final state of
a problem, during which, certain types of solutions are achieved is called a forward chain®. That
means the chaining is reasoning from facts to the conclusions which follow from the facts. It is also

known as data driven, bottom-up reasoning(10:159-166).

The primary method of representing knowledge in CLIPS is a rule. A rule is a collection of
conditions and the actions to be taken if the conditions are met. The rules were defined to describe
how to solve a problem. The entire set of rules in an expert system is called a knowledge base.
CLIPS provides the search mechanism (the inference engine) which select the facts in the data
base to be matched with the condition(s) in the rule base and continue on this cycle until there
is no rules eligible to be fired. The current state is represented by a list of facts. Here the facts
or the data for the data base is the facts retrieved by the Essential_Fact_Utilities. The rule base
is to be applied by the inference engine integrated as CLIPS/Ada to the facts data file. As the
LHS of a rule are met, the rule are activated and placed on the agenda according to their priority.
The priority is default to 0 for every rule in the knowledge base, unless a salience declaration is
placed auv the first pattern of the rule to change it. A rule with the highest priority, once it is
activated will remain at the top of the agenda, thus will be fired first. After no rules are eligible to
be activated, the top rule on the agenda is selected, and its RHS actions are executed. As a result

of RIIS actions, new rules can be activated or deactivated.

This pattern matching, activation, firing rules cycle is repeated until all rules that can fire

have done so or until the rule limit is reached(21:1-5).

VThe forward chain is different from backward chain in which that a backward chain is traversed from a hy pothesis
back to the facts which support the hypothesis

43

The expert system to be developed here must not only be able to check the syntactical
limitations for each activity, but also be able to find the inconsistencies between hierarchical IDEF,
diagrams. Thus, provide the user with Error, Warning, Suggestion or Notice messages. A summary

of the functions are listed below:

Check that each activity must have at least one input and output.

Check that each activity must have a name and be numbered.

Warning the user that any particular activity has too many data element associated with it,

or the activity has some information, for instance, a description of the activity is missing.

In the hierarchy of the IDEF, diagram, each parent activity’s boundary data elements must

be consistent with its child data elements.
¢ The number of icom number of a parent diagram and its child diagrams must be the same.
¢ The icom code of a parent activity should be consistent with its child diagram too.

¢ The number of boundary input, output, control, mechanism consistency check between a

parent and its child activities.

¢ Utility and Auxiliary rules to build up the environment of the syntax checking file.

Once the syntax checking function in the Essential Model menu is selected, the user should get a
list of messages concerning his work. If an error was encountered during the syntax checking, the
subsystem will be halted by a particular rule in the rules file. Otherwise, a congratulatory message

will follow all the Warning, Suggestion, or Notice messages if there are any.

The CLIPS/Ada used the VAX Ada Compiler version 1.5 running under VAX-VMS 5.1.1 to
create the executable. Therefore, it is useless on Unix based machines. Since the primary platform
for this research is a SUN-4 running a version of UNIX and a Verdix Ada compiler, several changes

to the original source code are performed by (16). First, all the CLPS/Ada source code files had

.ADA or .ADS extensions that are unacceptable to Verdix were changed to .a and spec.a files.
All the files was transferred to Olympus to be integrated as the Essential Subsystem of SAtool
II. When compiling CLIPS/Ada, many warning messages are still received. These messages are
due to the source code authors explicitly declaring loop counters. VAX Ada obviously allows such
declarations; Verdix Ada allows them also but does not particularly care for them. Therefore,
Verdix Ada issues a warning message(16:132-133). Those warning messages can be ignored. Also,
the objective of this study is to develop a structured expert system to evaluate application facts

and rules based upon expertise in the future.

Summary

This chapter presented the requirements analysis for the development of IDEF, Diagram
Translator and IDEF, Syntax Expert System. Since the Essential Subsystem of SAtool II is entirely
based on Ada language, the Expert System will be done using CLIPS/Ada. The number of fields
of the facts format are unlimited, thus giving us freedom to define the format of our expert system

checking rule patterns.

All the facts information of the essential subsystem can be translated into facts format files,
one file for the expert system and one for the essential model. Another expert system syntax
checking file can be loaded with the facts file in the CLIPS/Ada working memory. As a whole,
those files should be able to include all the information provided by the facts file and provide
necessary error messages and editing suggestions for the user to save their manual labor of checking

the syntax and consistency of the user’s IDEF, hierarchy diagrams.

IV. HIGH LEVEL DESIGN

Introduction

The purpose of this chapter is to present and justify the preliminary software design for the
IDEF, Diagram Translator (IDT) and the IDEF, Syntax Expert System (ISES). The idea and
principles of SADT is followed throughout the design process. The IDT is an object called the
" Essential Fact Utility” and is implemented in the Essential Model. The ISES is a CLIPS file
containing all the knowledge base of the syntax checking rules. The IDT is a set of Ada procedures
to extract the data in Essential Model data structure and put this data into individual data facts
files. The emphasis here focuses on the design and implementation of the Syntax Expert System

checking rules. There are four stages in expert system development:

1. proulem selection
2. initial prototype
3. expanded prototype

4. delivery system (7:23)

The design of the IDT and the expert system are currently developed. But, the facts format
resulting from the IDT is the data format of the expert system. So the implementation of the

expert system heavily depends upon tie implementation of the IDT.

The Essential Model of SAtool II is not complete. The Syntax Expert System will be the
initial prototype of the expert system as a subsystemn of the SAtool II. The user should be able to
create their hierarchical IDEF, diagrams, store and restore their file and perforim syntax checking

functions using The Essential Model.

The underlying efforts for this thesis investigation include the development of the knowledge

for understanding the background of SAtool I1, the data structure of the Essentizl Model and the

46

application of knowledge based systems. Since Al systems do more than process data for the user;
they use knowledge to improve their functionality. Expert systems navigate through knowledge
bases to solve problems and build new paths around rules and data. Knowledge development,

that’s the real answer(2:5).

Previous Study Considerations

The Sun3 and the Sun4 workstations using the SunOS and the SunView window-based en-
vironment are required for this tool. Also the IDEF, validation tool is implemented with Ada in
order to translate the essential model IDEF, diagrams into CLIPS/Ada readable facts format. It

is implemented as an Ada object called Essential Fact Utilities.

The expert system syntax checking functions developed in (16) has only validated its feasi-
bility. Much more syntax checking rules are to be implemented, especially for the consistencies of
boundary arrows between a parent and its child diagrams. Once the two main objects are com-
pleted, they will be integrated into the Essential Model together with the CLIPS/Ada performing

the syntax checking functions in SAtool I1.

IDEFy Diwagram Translator

The translator is used to translate the IDEF; graphical features extracted from the Essential
Model Object managers into a set of facts formatted for output to a file for permanent storage or
for input to the CLIPS/Ada working memory for syntax checking. It is required to be implemented
in Ada language. Ada is a strongly typed, high level language bascd on a set of casily understood
concepts, such as data abstraction, information hiding, and strong typing. In a sense, Ada is a
language that directly embodies many modern software engineering constructs and is therefore an
excellent vehicle with which to express programming solutions (4.4). The Flow diagram for the

IDEF, diagram translator is illustrated in Figure 17.

ICOM_Relation

Manager

Project

Manager

Activity

Manager

Essential.
Subsystem

Data_Element

Manager

Historical/
Activity
Manager

Calls_Relation

Manager

Consists.of_
Relation

Consists.of.
Relation

Manager

Retrieve/Restore
ICOM_Relation
Facts

Retrieve/Restore
Calls_Relation

Retrieve/Restore

Facts

.esm facts file

Retrieve/Restore

Project
Facts

Activity
Facts

Retrieve/Restore

Data_Element

Facts

Historical/
Activity
Facts

Facls

Retrieve/Restore

Retrieve/Restore

icom-facts

data-element-
facts

historical-
activity-facts

calls-rclation-

facts

/

consists-of-
relation-facts

Figure 17. Flow Diagram for IDEF¢ Diagram Translator

48

Because there are seven Objects Classes and Attributes Based on the Essential Data Model.

So there are seven sets of Retrieve and Restore procedures for each of those seven object classes.

¢ ICOM Relation Manager

Project Manager

Activity Manager

L]

Data Element Manager

Historical Activity Manager
o Calls Relation Manager

o Consists Of Relation Manager(16)

All those procedures are within « package named Essential_Fact_Utilities. Through interfacing
with the object Essential JO in the data model, each set of the facts extracted from the managers
are given a name by the statement “(deffacts the-name-of-the-facts (fact-1) (fact-2)..)”, in the
package Essential 0. Where the ‘deffacts’ is a CLIPS construct for naming a facts file. Thus
the facts extracted from the ICOM_Relation Manager will output a file name icom-relation-facts
following a set of facts extracted from the manager The seven manager names and their facts
names stated by the Essential IO in addition to their facts attributes is listed in Table 1. This
format is initiated by (16) and completed in this investigation. Notice: those fields in parenthesis
with capital letters means a fact variable to be extracted from the managers. To understand the

meaning of those attributes and the value of fact’s variables should refer to (16).

If any variable in the Essential Model is empty, than the Fact_Utility will input a “null”
string into the facts format. If the fact to he extracted is not empty and multi-field, like activity
descriptions, than the fil. for Iissential Model will save all the lines of the description and the file
for the CLIPS working memory will only save a ‘not-null’ for the syntax checking expert system.

The expert system needs only to know that the description is not null. Remember that the facts

19

format created by the Essential_.Fact.Utility creates all the facts input by the user for the IDEF,
diagrams. It does not show the boundary arrow data element relations between any parent and its

child activities.

An arrow in the IDEF, diagram may connect with functions on the drawing at both ends
is called an intermediate arrows. If one of the ends may be unconnected, it represents a boundary
arrow. Boundary arrows indicate that the information is produced or consumed beyond the scope
of the particular drawing. Boundary arrows at the A-0 level are referred to as ezternal arrows which
represent constraints of the external environment and outputs to that environment. An important
aspect of maintaining completeness and consistency ir an IDEF; model is to make certain that
all such boundary arrows match between a box and its lower level decomposition. As listed in
Table 1, the ICOM codes are represented as ‘i’ for input, ‘c’ for control, ‘o’ for output and ‘m’ for
mechanism which represents the ICOM relation of the data element arrows to the activity. They
must be based on the relative positions of the arrows on their parent diagram where they meet the
edge of the parent box. Thus a particular boundary arrow of a child diagram should have the same
ICOM code as their parent diagram. Furthermore, a tunneled arrow represents a discontinuity
that a constraint may arise that was not shown on the parent funct.on or a constraint may not
be appropriate at lower levels of detail. A new constraint that was not presented on the higher
level diagram is shown as a boundary arrow with parentheses “()” around its unconnected end.
Any constraint that is not represented in a lower level decomposition is indicated with parentheses

where the arrow attaches to the appropriate box.

For the intermediate arrows, there are two special representations:

1. feedback occurs when the output of cach function provides an input constraint to the other.

2. aleralion occurs when the output of each function provides a control constraint to the other(20:13-

30).

But the two special representations are not within the scope of this thesis research, since

those are not implemented in the Essential_.Model. The focuses here is concentrated on the im-
. .»)

plementation of the IDEF, diagram translator for the data elements that can be created in the

Essential _Subsystem.

The boundary arrow relationship between an IDEFy parent diagram and its child diagrams
will be created by the Ezpert Sysiem Syntax Checking rules before actual hierarchical syntax check-

ing took place. More details are discussed later in Chapter 6.

Since the Essential Model developed in (16) was following an Object Oriented Design and
Implementation technique, the Essential _Fact_Utility is implemented as an object in the Essential

Model, as defined in (25:14-15). An object is an abstraction of a set of real-world things such that:

o all of the real-world things in the set-the instances-have the same characteristics.

o all instances are subject to and conform to the same rules.

The facts format to be created is a set of real-world things to be manipulated by the Syntax Expert

Checking Rules thus a scries of “ezpert advises” will be derived for the user of the tool.

Retrieve Procedures. Because all the data of the IDEF diagrams created by the SAtool IT user
is stored as an Ada record in the Essential Model, the Retrieve Procedures are a set of operations
which iterate through all the data structures of the Essential Model. The data structures data
records will be Extracted by the retrieve procedures and put those data records into a specified
facts format in which each column is strictly defined according to the data element data type in
the Environment Types of the Essential Subsystem. The features of Ada language was specified in

the book “Ade as a second language” (8).

Each object class in the Essential Model will have a sel of facls cxlracled from lhe dala
struclure and a given facls name by (deffacts} as illustrated in Table 1. The facls format 15

readable to the CLIPS/Ada synlaz checking rules. Thus, all the struclures and dala clements of

-

Table 1. Object Classes Managers and Facts Format Extracted by Essential Fact Utilities

Object Class/Manager

facts format created

ICOM Relation

(deffacts icom-facts

(icom-tuple Activity Data_Element ICOM Pair_1d)
(icom-activity-inputs Activity Name #)
(icom-activity-control Activity Name #)
(icom-activity-output Activity.Name #)
(icom-activity-mechanisms Activity_Name #))

Project (deffacts project-facts
(project-name Project-Name))
Activity (deffacts activity-facts

(act-name Name)

(act-numb Name Number)

(act-desc Name Description)
(act-has-child Name Child)
(act-ref-type Name Reference_Type)
(act-ref Name Reference)
(act-version Name Activity_Version)
(act-ver-chg Name New_Version)
(act-date Name Date)

(act-author Name Author))

Data Element

(deffacts data-element-facts
(data-element-name Name)
(data-element-type Name Data.Type)
(data-element-minimum Name Minimuin)
(data-element-maximum Name Maximum)
(data-element-data-range Name Data_Range)
(data-element-values Name Values)
(data-desc Name Description)

(data-ref Name Reference)

(data-ref-type Name Reference_Type)
(data-ele-ver Name Version)

(data-e-v-chg Name Version_Change)
(data-ele-date Name Date)
(data-ele-author Name Author))

Historical Activity

(deffacts historical-activity-facts
(historical-tuple Project Activity_.Number))

Calls Relation

(deffacts calls-relation-facts
(calls-relation-tuple Activity Project Activity.Number))

Consists OF Relation

(deffacts consists-of-relation-facts
(consists-of-name 1D Parent Child))

52

ihe users IDEFy diagram should be i 'uded in the facts file for syntaz checking. Even if the user
does not input any dala for the IDEFy diagrams, the procedures should give a ‘null’ siring at the
appropriate posilion in the facls formal. An ezample of ils actual oulput stored for the Essential
Model but with only the project name, one aclivity, one data element is on the following page.
Notice ils relation and difference with Table 1. In which, Table 1 is the requirements of the facts
format of the Essential_Fact.Ulility that should be iranslated from the seven Object Class Managers.
The name of each set of facts is named by the Essential I0 with a (deffacts facts-name (fact) (fact)
..) stalement. While the actual translated oulput was implemented with all the facts in between a

header and an ending of the facts file.

Restore Procedures. In contrasi with the Retrieve procedures, the Restore procedures are only
those operations that iterale through the facis file and put all the facts back inlo the Essential
Model, the format to restore each piece of fact must be exactly the same as they were as defined in

the previous Relrieve procedures, otherwise, an exception is raised and the program slops execution.

IDEFy Syniaz Ezpert System Componcils

The Inference Engine Selected. The inference engine of shell selected for this thesis research
is CLIPS/Ada. It is an Ada version of CLIPS, which stands for “C Language Integrated Production
System”, The selection of shell for the development of any particular ezpert system has always been
a kind of question. “Not a single existing shell will salisfy all the necessities of the developers

needs,” (7:21-25).

In the technical literature and common usage, expert system shells can lie anywhere on
a continuum fiom inteipreters of relatively siinple languages to very elaborate devel-
opment environments. Each has its own purposes and strengths and can complement
other shells by being used at different times in a project’s life cycle.

o---o-.o

¢ we we w=a

I A R R R R A Ay

..............

o e
l”)")l',)’l’D’l)’))l"’))))’)")”)),,,D)’l”l”)”’)i)"l)

HH
H SAtool II - IDEFO Essential Fact File - CLIPS Readable Format
; Date and Time of File Creation : 02/25/91 22:24:11

.......................

’"'l”’b’”"”)D”ll))”))"”’l”’)))")”,,)’)l’)l)"”’)l)’)’

; ;¥*START ALL FACTS#**
(deffacts icom~facts
(icom-tuple Format_Example

)

(dettacts project-facts
(project-name Format_Example)
)

(deffacts activity-facts
(act-name Activity_Name)
(act-numb Activity_Name
(act-desc Activity_Name
(act-has-child Activity_Name
(act-ref-type Activity_Name
(act-ref Activity_Name
(act-version Activity_Name
(act-ver-chg Activity_Name
(act-date Activity_Name
(act-author Activity_Name

)

(deffacts data-element-facts
(data-element-name data_format)
(data-element-type data_format

Format_Data c

null)
null)
null)
null)
null)
null)
null)
null)
null)

null)

(data-element-minimum data_format
(data-element-maximum data_format
(data-element-data~range data_format
(data-element-values data_format
(data~desc data_format

(data~ref data_format

(data-ref-type data_format
(data-ele-ver data_format
(data-e-v-chg data_format
(data-ele-date data_format
(data-ele-author data_format

)

(deffacts historical-activity-facts
(historical-tuple Format_Example

)

(deffacts calls-relation-facts
(calls-relation-tuple Call_Activity
)

(deffacts consists-of-relation-facts
(consists—-of-name 1 Format_Data
)

; s **END ALL FACTS*x

null)
null)
null)
null)

null)
null)

null)
null)
null)
null)
null)

A0)

Format_Example

formatted_data)

54

1)

A0)

All the shells have four features in common:

1. the minimum fealure setl of a knowledge representation scheme
2. an inference or search mechanism
3. a means of describing a problem

4. a way to determine the status of a problem while it is being solved(7:21-22)

Here, tn this research, the problem to be solved is represented in a set of facts lists iranslated
from the Essential Model Data Structure. Each facl has limited number of fields. The knowledge
base is another file of rules that will be activated by the inference engine, examining, fealuring, and
changing the status of the problem until there is no rule eligible to be applied. Thus, a set of certain

results 1s derived through the process and ezperl suggestions is iniroduced 1o the user.

Knowledge Base. Knowledge base is the heart of an expert system. It contains the problem-
solving knowledge of the pariicular application. CLIPS was selecied as the shell {ool for this thesis
research. The designer of an expert sysiem should have a full understanding of both all the appl:-
cation techniques of a knowledge base (21), and all the details in the problem domain. Thus, the
knowledge base will be able 1o reflect all the necessary characterisiics intended. In the development
of an ezperl system, all the knowledge bases implemented are in the form of if ...then rules. A rule
is a collection of condilions and the actions o be taken if the conditions are met. The developer of
an expert system defines the rules which describe how to solve a problem. The entire sel of rules
an ezpert system is called a knowledge base. Some good ezamples are illustraled in (22) about

CLIPS rule developing guides.

The knowledge basc here 1s required to check the IDEF, syniaz features like: each aclivily
should have a name, number, description, each activity box should have al least one control and

one output arrow; the parent activily boundary icom arrows should be consistenl with their child

aclivities boundary arrows, elc.

The knowledge base must be able 1o derive the relationship between a parent diagram and ils
child diagrams. It cannot check all the required features directly from the facls created by the Es-
sentral_Fact_ Utility. Hierarchical rules in the knowledge base to build up boundary relations between

any particular parent and iis child diagrams through the fact created are necessary.

If any syniaz inconsistencies were found by the knowledge base, an appropriale message should
be prowided to the user of the condition detecied. through which, the user could easily go back to

correct the errors in his file withoul time consutming and error pruning manual checks.

As the IDEF, syntaz does suggest that any parent activily should notl have more than siz child
activities, the rules 1o be developed here should consider those parent activrties with two, three, four,
five and siz child activities. But a sel of rules should inform the user thal any any particular actwty

has more than siz child activilies.

Data Base (Working Memory). The data base contains a vroad range of information about
the current stalus of the problem being solved. The temporary >ulpu. files of the IDEF; Diagram
Translator became the initial dala base for the Syntaz Checking Ezzert System knowledge base. A
package named CLIPS Working Memory Interface in the Essential Model 1s the only object that has
direct interface with the CLIPS/Ada. All the related files must through this wnlerface 1o accomphish

the Ezpert System Syniaz Checking functions(16:86).

While checking the IDEFy syntax, the dala base also conlains a list of rules that have been
examaned and fired. The contenls of the dala base 1s volatile, the changing of ils conlents may very

well affect the execution of the knowledge base.

User Interface. The user winterface allvws the user vo communicate with the system and also
provides the user with an wmsight wlo the problem-solving process carried out by the infer.nce engine.

The user wnlerface adopled here 1s the menu selection i the Lssential Model. The adiantages of

using a menu-based wmierface arc as follows:

1. Users need not know the names of individual commands.
2. Typing effort is usually minimal.
3. It is impossible for users to put the system into an erroncous state.

4. Context-dependent help can be provided(26:265).

An ezxample of the program test and demonstration through the menu seleclion user interface is
wn Appendiz D. The input file “thesis.err.esm” is an output facts file of the Essentral_Model, 1t is
used 10 be restored back to the Essential_Model to check its IDEF; syntax. It was specially designed
to project the syntaz checking abilities of the expert system. The resulled syniaz checking error

messages are all commented with the origin of their errors. !

Test Plan

A bottom-up testing methodology is used because IDEFy Diagram Translator and IDEFy Syn-
taz Ezpert System are lower-level than Satool II. The lesting steps are : unit festing, integration
testing, and validation testing(26:502). The Unil lesting slep focuses on each module mdmndually
to make sure that ils functions properly as a unil. Thus the IDT should have all its procedures
correctly execuled and the facts file extracied from the Essential Model should be exactly the format

as defined.

For the level of syntaz checking rules, each group of rules is indwidually tested to make sure
that the behavior of its execulron 1s under control and desired results will be . ~aled. Also an ezample
project of hierarchical IDEF, diagrams provided in Chapler 2 named “Conirol Elevator”, will be used
for validation testing on the over all functions of the system. Carefully designed errors, mcluding
parenl actwities with 2, 3, 4, 5, and 6 child aclivilies are expecled lo be delected by the Ezpert Syslem
Rules The same set of IDEFy diagrams but with designed error inputs is also presented i conlrast
with the sample IDEF, diagrams. Those errors are analyzed and explained with added comments

m Appendiz D: SAMPLE ESSENTIAT “'CDEL IDEFe SYNTAXN CHECKING SCRIPT. Fach

&
-1

syntaz checking messages will be justified 1o prove that the sysiem is functioning as il is designed

to be. Thus we will be confident that we are building the right product.

The total number of rules for syntaz checking ezpert system is 198, not including 43 auzthary
rules. A subsel of the names of the rules in the rule base is lisied below, it is listed as an example
for the overview of the rules been implemented. The complete file of rules and their implementation

is in Appendiz C.

. print-introduction

. print-project-name

. exit-if-error

. no-error-congratulate

zero-outputs

[= TS B S L A

zero-controls

-1

. too-many-mechs

oo

. too-many-outputs

9. too-many-controls

10. too-many-inputs

11. null-project-name

12. null-activity-number

13. null-activity-description
14. too-many-children-levell
15. too-many-children-level2
16. too-many-children-level3
17. parent-2child

18. parent2-boundary

19. child2-boundary-child1
20. child2-boundary-child2
21. clear-2child-mid

22. remove-2child-2boundary
23. rid-2child-2consists

24. check-2child-parent.

25. check-2child-parent-consists

26. check-2child-parent-icom

27. check-2child-child

28. parent2-icom-c

29. parent2-icom-o

30. parent2-icom-i

31. parent2-icom-m

32. parent2-control-add

33. parent2-output-add

34. parent2-input-add

35. parent2-mech-add

36. child2-icom-c

37. child2-icom-o

38. child2-icom-i

39. child2-icom-m

40. child2-control-add

41. child2-output-add

42. child2-input-add

43. child2-mech-add

44. check-parent-2child-control
45. check-parent-2child-output
46. check-parent-2child-input
47. check-parent-2child-mech

Summary

Thas chapler presenied a high level software design for the IDEFy Diagram Translator and the
IDEF, Syniaz Expert System. The facls format to be created by the translaior and to be checked by
the expert system are described. The concept of an Ezpert System was ezplained and the knowledge
base to be implemented for the expert system in this research was analyzed both on s funcltional

basis and on ils siructure.

The prelimanary test design erpeciations were aniroduced These promde a gurde 1o the low
level design i the next chapler. A list of the name of a subset of those rules is summarized as

follows: The rules name hsted here only shows a parent actwily having two child actinties. For

those parent actinties wilh three to sir child actwites, the rules name are not shown here, bhul

their names ar. similar, ezcept the changing of the number in those rule names indicale that this
rule is for a parent activily with that number of child actwities. Also, more intermediate rules are

needed for those rules. The increasing of chid number increases the complezily in implementing

those rules.

60

V. DETAILED DESIGN, IMPLEMENTATION, AND TESTING

Introduction

This chapter discusses the low level design and implementation of the IDEFy Diagram Trans-
lator and the IDEF, Syntax Expert System specified in the previous chapter. As mentioned previ-
ously, the facts format to be created by the IDT must be correct before further effort is expended
to implement the syntax checking rules for the Expert System. Those facts are the initial data base

(working memory/knowledge base) for the IDEFq Syntax Checking Expert System.

The construct of syntax checking rules has been discussed in chapter 4. The rationale and

detailed implementation of those rules is explained in this chapter.

IDEFy Diagram Translator Implementation

The IDEF, Diagram Translator is implemented as an Ada package named
Essential_Fact_Utility. It has seven pair of Retrieve and Restore procedures. Since the procedures
for ICOM relations and Project name are already completed in (16), the remaining work will have

to complete the following procedures:

1. Activity:

o Retrieve Activity Facts
e Restore Activity Facts

2. Data Element:

e Retrieve Data Element Facts

e Restore Data Element Facts
3. Historical Activity:

¢ Retrieve Historical Activity Facts

o Restore Historical Activity Facts

4. Calls Relation:

61

¢ Retrieve Calls Relation Facts

¢ Restore Calls Relation Facts
5. Consists Of Relation:

o Retrieve Consists Of Relation Facts

o Restore Consists Of Relation Facts

The facts file created by this package will carry a ‘.esm’ extension. Its format has already

shown in Table 1. The file Essential_Fact.Utility is presented in Appendix B.

Its relations and visibility with the other Ada objects in the Essential Model in addition to

the syntax checking rules file is illustrated in Figure 18.

Ezpert System Syniar Checking Rules Design

The process to develop a rule based expert system has many steps:

e planning

o scheduling

e chronicling

e analysis

¢ configuration management

e resource management

First the feasibility of this approacn 1s demonstrated mn (16). A design goal was set to implement
IDEF, syntax checking expert system for SAtool II. The facts translated to represent IDEF0
diagrams consists of one or more fields enclosed 1n atching left and right parentheses. Refer to

Table 1.

The relative position of each field in a fact translated by IDEF, Translator is strictly defined.

The space between cach field might be different but they will Le neglected by CLIPS if tue spaces are

62

Error
Handler

Essential

ubsystem

- Data S
Activity Element A}::?‘t?: ical Calls Consists
Manager Manager Y Relation of Relation Relation

Manager

Manager Manager

Essential
Fact
tilities

Project

Manager

LEGEND

Q Object

—— V.isibi!ity
direction

) Rules file

CLIPS

Working
Memory

Interface

Figure 18. Essential Subsystems Relations and Visibihity

63

Control

1-5

________ > Verb-Activity-Name

Number
1-6

Mechanism

0-5

——————— >

Figure 19. A Typical Activity Box Features

more than one. Some of the IDEF0 Diagram syntax can be directly derived from the facts created
by the IDT, but in practice most of them cannot. The design process evolves as intermediate rules
are implemented to create the data facts needed to check particular IDEF, synta. For instance,
the number of boundary arrows between a parent activity and its child activities. To be successful,
the implementing techniques of CLIPS must be developed through out this effort. More efficient
rule sets are gained from the experience of the previous rules implemented. Thus structured and

related rule bases are expected to be developed in order to capture all the syntactical features of

IDEF, diagrams.

IDEFy Diagram Syntaz Analysis. Since the IDEF, system model consists of a series of hier-
archically related function diagrams, each function box has to have some requirzd syntax features.

Also the relation between a parent box and its child box must be consistent with each other.

Activily IDEF, Syntaz. A typical activity box is shown is Figure 19. If any necessary

features for a box is missing, then its syntax is incorrect.

The IDEF, syntax for an activity box is:

An activity box must have a name started with a verb.

o An activity box must have a number except the top-most level A-0 diagram.

An activity box must have at least one control, one output but no more than five.

An activity box may have zero to five input or mechanism.

Except for the top-most level Context Diagram, there should no more than six boxes in a

diagram.
o Any arrows or data connected to the box should be named.
Boundary IDEF, Syntaz. As mentioned in Chapter 4, the relative positions of a bound-

ary arrow of child activities must meet the edge of its parent activity. The boundary IDEF, syntax

for a parent activity and its child activities are listed below:

A parent activity must have at least two bat no more than six child activities.

*

The total number of input, output, control, or mechanism arrow(s) of a parent activity must
be the same as those of its child activities boundary input, output, control, or mechanism

arrow(s).
o Each boundary parent or child arrows must have a data name.

o The data name and icom relation of each boundary arrow between the parent and its child

diagrams should be consistent.

o Any boundary control and output numbers should not be less than one and more than five.

Unless a pipeline data item is used at the boundary.

e Any boundary input and mechanism numbers should not be more than five, but might be 0

At this point, we must remember that the intermediate arrows between activitics will be the
boundary arrows for each individual activity. And should be the next lower level boundary arrows

of the child activities for that particular activity Notice the mid data element in Figure 20.

65

control
input output
——] ———
’ \
4 \
4 \
7 mechanixn
\
/
, \
, \
, control \
’ N
’ \
’ \
’ \
’ \
— \
. AY
mput ‘d \
m1
———
-
e \ output
-7 \
e - AY
- control N
. mechanism
- \
- - \
”~ - \
- > N
- AY
mid N
\
\
AY
\
\
\
\
—> \
. output
mechanism P

Figure 20. Hierarchical Boundary Relations Between Parent and Child Activities

66

Syntaz Checking Environment. Since the (initial-fact) for any Working Memory always ex-
ists; the title message of the syntax checking environment is created by using this fact and with a
highest salience declaration to ensure that the environment will be created before any other mes-
sages. Right after this, the project name will be directly derived from the facts and presented after

the syntax checking environment message. It reads as follows:

*¥** Essential Subsystem Syntax Checking Messages ****

= The project == Name-of-Project == is being checked:

After all the checking rules were fired, if no errors were discovered, than a congratulatory
message will be presented, but a suggestion will also be presented to remind the user recheck the
logical structure of his work. Otherwise, when syntax error occurred, another rule with the lowerest
salience will be fired to halt the program preventing further rules firing. The control is returned
to the top-level program. This rule must be the last one to be fired, because we want to make
sure that all applicable checkings are ali fired. Thus all information available to the user should be

presented before the prograr: halted.

Essential Model Facls Formal Analysis for Boundary Arrows. Since all the data elements

(arrows) related to an activity are only represented in the 1com facts.

(icom-tuple Activity Data_Element ICOM Pair.1d)

And the parent child relations between an activity and its child activities are represented in

the activity facts.

(act-has-child Parent _Activity Child1_Activity)

67

(act-has-child Parent_Activity Child2_Activity)

There is no direct trace of the boundary arrows of a particular parent activity and the
boundary arrows of its child activities. Thus hierarchical levels of rules must be developed before
actual syntax checking can be performed. But there are still some features of the IDEF, syntax

that could be directly derived from the facts created by the IDT.

For instance, each activity box must have at least one control and one output; each activity
must have activity number, descriptions and the project must have a project name. Those

can be directly derived by the facts created by Retrieve and Restore ICOM Relation procedures in

the IDT:
(icom-activity-control Activity_.Name #)

and

(icom-activity-output Activity_Name #)
(act-name Name)

(act-numb Name Number)

(act-desc Name Description)
(project-name Project_Name)

If any of those field are missing, then the IDT will put a ‘null’ in the appropriate field, thus
the checking of these missing fields are easier to implement. Say for activity description, if it is null
than the fact should be:

(act-desc Activity_Name null)

If this fact patlern is mabched by the LIS of a rule named “null-activity-description” with

only this pattern, and the 3rd field in act-desc fact 1s a *null’, then the RIS action could be fired :

(defrule null-actaivity~-description

68

(act-desc ?activity-name null)
=>
WARNING: ?activity-name has no description.
It must be mentioned that this is only an example to show the matching of a pattern in the

data base and a pattern in the LHS of a rule. The CLIPS syntax for defining a rule is not strictly

followed here. Refer to Appendix C for the detail implementation of Syntax Checking Rules.

Translation Rules for Boundary Arrows. Since the boundary arrows cannot be directly de-
rived from the facts created by IDT, levels of rules are necessary for creating those facts between
each parent and their child diagrams. Recall the constraint that each parent should have at
least two but no more than six child diagrams. For each level of rules, there are five group of rules
for any parent activity with 2, 3, 4, 5, or 6 child activities. The relations between each parent and

its child activities are distinguished by the parent name derived from the facts:

(act-has-child Parent_Name Childl)
(act-has-child Parent_.Name Child2)

are in the original state of the Essential Model showing a parent child relation. Since in
this example, the parent activity, Parent_.Name, has only two child activities. A new parent/child

relation fact should be created as:

{parent2 Parent.Name Child1l Child2)
This format of fact should be created for any parent activity with two child activities at any level
of the IDEF, diagrams with different Parent_Name and child names.
Different parent and child boundary relations should also be created for syntax checking.
Those boundary facts might be created at different time and stored in different places in the

new fact lists created and asserted m the Working Memory.

69

FACTS RULES

ENGINE

N\ JnreRence /L——
— N

AGEMNDA

Figure 21. Pattern Matching: Rules and Facts

In rule-based languages, however, the matching process takes place repeatedly. Normally, the
fact-list will be modified during each cycle of execution. New facts may be added to the fact-list
or old facts may be removed from the fact-list. These changes may cause previously unsatisfied
patterns to be satisfied or previously satisfied patterns to become unsatisfied. The problem of
matching now becomes an ongoing process. During each cycle, as facts are added and removed, -

the set of rules that are satisfied must be maintained and updated.

It is the rules that remain static and the facts that change. Thus, the facts should find the

rules(10:502-503).

As new facts are created, they might add new rules eligible to fire in the agenda, which is a
stack of rules eligible to fire. On the contrary, as facts are retracted from the facts list, the rules
to be fired in the agenda relating to those facts will also be retracted. See the Pattern Matching

relation of Rules and Facts in Figure 21.

High Level Creating Boundary Fucls Rules. For the designing of hierarchical rules, care
must be taken to make sure that the execution of those rules are controlled. Groups of rules are

implemented. Thus some techniques or principles must he carefully followed:

1. All the variable names for each group of rules must be wstinct and casy to recognize

70

2. The ordering of patterns on the LHS of a rule should be carefully designed in accordance
with the facts sequence in the facts created by IDT to minimize change of states in order to

improve efficiency:

e most specific zattern go first
o patterns matching volatile facts go last

o patterns matching the fewest facts go first

3. Perform tests as soon as possible; which means any test patterns within a rule should be

placed as close to the top of the rule as possible.
4. Use a priority declaration pattern in a rule to aid in controlling the flow of execution.

5. Use simple rules vs complex rules; the key is to prevent the unnecessary comparisons from

occuring.

6. Reduce comparison by using temporary facts to store data(10:502-529).

To create th- soundary facts relations between any parent activity and its child activities,
the parent-child relation must first be created and stored in a single fact. This is accomplished by
a set of rules that create a set of facts each containing the name of a parent activity and its child

lists as in the example below:

(parent2 Parent-two-child Childi Child2)

(parent2 Parent-of-two Child-1 Child-2)

(pareat3 Parent-three-child Childi Child2 Child3)

(parent4 Parent-four-child Childl Child2 Child3 Child4)
(parent5 Parent-five-child Childl Child2 Child3 Child4 Child§)

(parent6 Parent-six-child Childl Child2 Child3 Child4 Child5 Childé)

With those facts created for each set of parent and child activities, the facts to create their
boundary relations could then be fired. Adding the pattern matching for icom-tuple, each activity’s
name, data, icom relations might be created. Using the parent name as a key to keep track of any
particular parent-child relations, further data facts could be matched between each pair of parent

and child activities according to these facts.

For the child activities, it is a little more complex. Since the intermediate data arrows are not
boundary arrows. They must be cleared to be consistent with their parent activity. Many types of
intermediate arrows are to be considered for parents with 2, 3, 4, 5, and 6 child activities. Those
type of intermediate arrows are to be retracted from the created child boundary facts. Part of those
types are illustrated in Figure 22 as an example. The same or similar situations my be extended

to those different parents with different number of child activities.

For those intermediate data arrows that are the parent or child data of a pipeline data item,
no matter how many levels of pipeline data items may exists. Those pipeline data relations will be
stored in the Essential Model as consists-of-relation facts. Showing that a parent data is having at
least two child data, the intermediate pipeline arrows should also be retracted from the boundary

fact lists. Two types of consists of relation data arrow forms which is shown 1n Figure 23.

Low Level Sifting/Adding Rules. Salience is suggested not to be excessively employed
when patterns can be used to express the criteria for selection(10). Each level of rules must not fire
until its higher level rules have already created all the available facts needed to be matched for the
lower level of rules. Salience is explicitly used to control the sequence of rules execution. Which
means only after all the original boundary facts have already been created, then all the rules used
to eliminate intermediate arrows will be fired accordingly. Thus the intermediate arrows will be

sifted out of the child boundary arrow facts.

As an example, two different parent but with the same number of three child diagrams should

Parent Child Analysis

‘The out put of
¢ extra child1, input of

—
-

child2, mid is
not a boundary

arrow,

The extra control
is only part of

control arrows,
it is considered

only one boundary
control arrow.

only those labeled
arrows are
boundary child

Ly

arrows.

out

inl Only those labeled

l —_ 1 \1—2 | arrows are

boundary arrows

b

for the parent

vy

outl | activity with
By WU

activities.
in 2

m

Figure 22. Intermediate Data Arrows Between Child Activities

— good
bad ‘L
e

yes 1o
first
Quame O ————— —
middle
—
___la,s_t_> status error data

Figure 23. Pipeline Consists of Data Arrow Relations

have their boundary arrow facts created as follows; the key to keep track of any parent and its child

relations is the parent-name in the second fields:

(parent3-boundary parent-a data-one c)
(parent3-boundary parent-a data-two o)
(parent3-boundary parent-a data-three i)
(parent3-boundary parent-a data-four m)

(child3-boundary parent-a child-i data-one c)
(child3-boundary parent-a child-2 data-two o)
(child3-boundary parent-a child-1 data-three i)
(child3-boundary parent-a child-3 data-four m)
and;

(parent3-boundary parent-b data-1 c¢)
(parent3-boundary parent-b data-2 o)
(parent3-boundary parent-b data-3 i)

(child3-boundary parent-b child-one data-1 c)

(child3-boundary parent-b child-three data-2 o)
(child3-boundary parent-b child-one data-3 i)

Up to this point, only after the boundary facts are coriected created, then the rules to create
boundary icom numbers could be cerrectly fired. The fitst level of icom munber rules will create

all the parent and child activity facts with the number of 1. For example, a single boundary fact

created as:

(parent3-boundary Parent-name P-data c¢)
(parent3-boundary Parent-name data-P c)

Its icom number fact will be created as:

(parent3-icom Parent-name P-data control 1)
(parent3-icom Parent-name data-P control 1)

The parent activity with name Parent-name may have more than one control. The next
lower level rules will match the facts created and add them up to show the correct boundary icom
numbers for each parent and its child activities. Thus, the previous two parent3-icom facts will be
removed from the facts list, a new facts will be created as:

(parent3-icom Parent-name genl control 2)

Since we need only to keep track of the icom number here, the data associated with each
parent or child is not considered here. So they will be replaced by a different symbol created
by (gensym)! in the proper field to make sure that this field in the newly created facts has no
duplicated data element in other facts. The name of the data is replaced by a series of symbols as,
genl, gen2,... as the rule continues on firing. The basic reason here is that all the data elements
in the data dictionary should have a different name. Again, the parents name is the key to keep

track of the relation between a particular parent and its child activities.

Thus the final icom number facts for a parent may be stored in the facts lists as:

(parent3-icom Parent-name P-data control 3)

tgensymiis a CLIPS feature that will create different symbols for the matched data item for each firing of the rule

(child3-icom Parent-name C-data control 3)

Note the icom number for parent and child facts with the same parent name and the same
icom code, which is control here, should have the same number added. Otherwise it is an IDEF,

syntax error.

Hierarchical Consistency Checking Rules. Only after all the necessary facts for the boundary
arrow facts between parent activities and their child activities are correctly created. Then the

consistency checking rules are ready to be used.

The summary of those 1f..then constructs for certain condition and appropriate action: are

illustrated in Table 2.

Notice that the absence of a particular fact in the created fact-list is useful for the syntax
checking rules. When a parent having a boundary data arrow with labeled data element name, but
its child activities does not have the same boundary data arrow, and the boundary is not a pipeline
data, then it is a syntax error. When the parent and its child activities having the same boundary

data arrow but with a different icom code, it is still a syntax error.

Through the process of IDEF diagram syntax checking, there are 5 types of messages that

might be provided to the user by the Syntax Checking Expert System. Those are summarized in

Table 3:

The structure and visibility between each set of rules are illustrated in Figure 24.

76

Table 2. if...then Construct for the IDEFy Syntax Checking Knowledge Base

if | condition(s)

| then | action(s)

| Remarks

if | an activity does then | prompt the user The name should
not have a name a syntax error started with a verb

if | an activity does then | prompt the user The number should
not have a number a syntax error started with an A

if | an activity does then | prompt a warning | A description is not
not have any about the situation | required by the
description syntax

if | an activity does then | prompt the user at least one control is
not have any control a syntax error required for any activity

if | an activity does then | prompt the user at least one output is
not have any output then | a syntax error required for any activity

if | an activity has then | prompt the user input and mechanism may
more than five a syntax error be 0-5 control and
input, output, ot tput must be 1-5
control or mechanisms

if | a parent activity has a then | prompt the user boundary data element
boundary data, but its a syntax error inconsistency between the
child diagrams does parent and its children
not have it

if | a parent’s boundary data | then | prompt the user boundary icom
icom code is different than a syntax error inconsistency between the
it’s child’s boundary data parent and its children

if | the number of a parent’s then | prompt the user number of boundary data
boundary input, output, a syntax error inconsistency between the
control and mechanism is parent and it’s children
different than its child’s

Table 3. Possible Syntax Expert System Checking Results

[number | MESSAGES

Remarks

CONGRATULATORY:

No syntax errors was found. If no
syntax error facts was asserted after the
rules checking is done, then this message
will be presented at the end of all the
other messages.

ERRORS:

Syntax error encountered, syntax error
fact will be asserted, program will be
halted after all the checkings are done.

WARNING:

Some features of the users project work
were discovered that might cause problem.

NOTICE:

Reminder to the user that something should
be carefully done.

o

SUGGESTION:

Suggest the user that further manually
recheck might be helpful to find

logical errors that cannot be found by
the syntax checking rules.

78

Utility

Rule
ICONGRATULATORY HALT
WARNING SUGGESTION ERROR NOTICE
checking
.. consistancy
icom rules activity
rules

add
boundary
icom

auxiliary

clear create

boundary boundary

icom

CLIPS
Working

Memory
Interface

create

boundary

LEGEND

C] Ada Obj.
D Rule Set
| | Results

Essential
Fact
Utility

Figure 24. SAtool JI Syntax Checking R les visibility network

The SAtool I Syntax Expert System Syntax Checking Rules are in Appendix C. Total of 241

rules are implemented.

IMPORTANT NOTICE: Because the behavior of CLIPS control cycles, previously acti-
vated rules will be fired after those rules activated later than it was activated. If all the rules have
the same priority. The agenda for the activated rules is a first come, last out stack operation .
Which means first come (rules activated earlier), last out(will be fired later). Considering this, the
sequence of rules presented in the thesis is for the clarity to the rcaders. It is implemented and
grouped using another sequence in the Essential Model to gain efficiency in performing the Expert

system syntax checking functions.

Testing Ezpectalions

A well designed testing procedures enables the software engineer to derive sets of input con-
ditions that will fully test all functional requirements for a program. This attempts to find errors

in the following categories:

e incorrect or missing functions,

interface errors,

o errors in data structures,

performance errors, and

initialization and termination errors (15:4~10).

The program developed should be able to store all the user input IDEF, data structures into a set
of facts format as shown previously, and the file could be restored back into the Essential Model
for further work or chauging or permanent store. Only when all the facts are proven to be correct,

then the Expert System could be expected to corrcctly perform its syntax checking abilities.

80

For the Expert System, a summary of the expected performance for the expert system are as

follows:

1. Does it contains all the required syntactical checking rules for the Essential Model?

2. Does it successfully create all the boundary arrow facts for various parent activities with

different number of child diagrams to perform further hierarchical consistency checks?

3. Does all the checking rules correctly reflect the syntax errors? Or does some of the rules had

been wrongly fired and caused errors thus confused the user?

Test Resuits Valhidation

As mentioned in the Test Plan in Chapter 4, carefully designed errorsin the example IDEF,
diagrams named “Control Elevator” was input as the SAtool II Essential Model test program. The
output ‘.esm’ file was named as “thesis_err.esm” to be used in the validation test. In which, it
includes parent activities that has 2 to 6 child activities. Data inconsistencies was design between
each pair of parent and child activities. Also, icom code consistency, activity syntax, and number
of boundary icom consistencies together with checking the number of child activities are intended

to be reflected by the syntax checking expert system.

The reader of this thesis should refer to the original example IDEF, diagrams in chapter
2, compare the error example in Appendix D and the syntax checking results to see that the

program correctly performs its syntax checking functions.
The results of the syntax checking expert system based on the “error example” is summarized
as follows:
¢ Activity A2 was found has more than 6 child activities.
o Activity A265 Send_Signals has no description.

o Activity Checl._Destination nceds at least | control.

81

Data inconsistency between parent activity. Sort_Signals data ‘o’ false_signals and its child

diagrams.
Data inconsistency between child activity Send_Signals data ‘o’ signals and its parent.

Data inconsistency between child activity Compare.Signals data ‘c’ not.confirmed and its

parent.
Data inconsistency between child activity Clear_Destinatio data ‘i’ no.stopped and its parent.

Data inconsistency between parent activity Elevator_Control data ‘o’ signals and its child

diagrams.

Data inconsistency between parent activity Elevator.Control data ‘c’ nofloor_sensor and its

child diagrams.

icom inconsistency between activity Elevator_Control and its child diagram Check.Destination.
Data inconsistency between child activity Sort.Signals data ‘o’ falsesignals and its parent.
Data inconsistency between child activity Monitor_Arrival data ‘¢’ floor.sensor and its parent.

Data inconsistency between parent activity Store_Request data ‘i’ passenger.requests and its

child diagrams.

Data inconsistency between parent activity Control.Elevator data ‘c’ floorsensor and its child

diagrams.

Data inconsistency between child activity Elevator_Control data ‘c’ nofloor.senscr and its

parent.

there might be an ERROR.: The number of boundary controls of the parent activity Sort_Signals
is 1 control(s) less than its child boundary controls. Are there “consists of” data items at

boundary? Please recheck the syntax.

there might be an ERROR: The number of boundary inputs of the parent activity Man-

age_Destination is 1 input(s) less than its child bound

82

o there might be an ERROR: The number of boundary controls of parent activity Eleva-
tor.Control is 1 control(s) more than its child activities. Are there “consists of” data items

at boundary? Please recheck the syntax.

o there might be an ERROR: The number of boundary inputs of the parent activity Eleva-
tor.Control is 1 input(s) less than its child boundary inputs. Are there “consists of” data

items at boundary? Please recheck the syntax.

¢ Data inconsistency between parent activity Manage_Destination data ‘i’ elevator_status and

its child diagrams.

All the intended syntax errors were reflected by the syntax checking expert system. In compar-
ison with the “error example” IDEF, diagrams one should notice that a data inconsistency between
a parent and child activities will raise two error messages. One by the “check_child_parent” rule
and one by “check_child_child” rule. The reason for this is twofold, one is to double check the
consistencies between each pair of parent and child activities, the other is for the lowest level child
activities that has a data arrow inconsistent with its immediate parent activities, the second rule

is necessary to check its consistency with its parent activity.

Summary

In this chapter, the low level design and implementation of IDEF, diagram Transtator and
IDEF; Syntax Expert Checking rules are explained. The component and levels of design process
are illustrated using both figures and tables. The expectations for the testing results together in

Appendix D will be examined to indicate validation of this thesis effort.

83

VI. CONCLUSIONS AND RECOMMENDATIONS

Introduction

The purpose of this thesis investigation is to continue the design and implement an application
of expert system for checking the Essential Model SAtool II IDEF, syntax and produce an expert
system structure for applications using SADT. This chapter presents a conclusion and several

recommendations for future researchers.

Conclusions

This investigation is classified into two major categories: The full implementation of IDEF,
Diagram Translator (IDT) and IDEF, Syntax Expert System Rules. The translator for the IDEFy
diagram is used to translate the IDEF, graphical features extracted from the Essential Model
Object managers into a set of facts file. The fact file is formatted to output for permanent storage
or for input to the CLIPS/Ada working memory for syntax checking. All the facts are represented
as a set of parenthesized lists with different number of fields. The IDT was implemented in the

Ada language as a package in the Essential Model.

The IDEF, Syntax Expert System consists of the inference engine, the knowledge base, the
data base, and the user interface. The expert system shell selected was CLIPS/Ada which was
already integrated with the Essential Model as a subsystem in (16). The inference engine search
process applies the knowledge to the solution of a specific domain using logical reasoning. To check
IDEF, syntax in any IDEF, hierarchical diagrams, the forward chaining control strategy is used.
It applies the knowledge base of the problem, manipulates the initial data base, modifies the data,
and derives a series of conclusions. The Expert System Rules file is 105 K bytes, and the pattern
matching for the syntax checking rules is both memory and time consuming. Even in o Mamframe,
where the Essential Model and all the related subsystems are, it takes minutes for the CLIPS/Ada

Working Memory to assert. all the facts and another minute for the CLIPS/Ada to compile all the

84

rules. Then the Syntax Expert System could search through all the facts, change states, derive

final syntax expert suggestions.

The Expert System Syntax Checking functions produces correct checking results for the
IDEF, diagrams with only single data items (constraint) used in the IDEF, diagrams. Pipeline
data item can be very complex. A pipeline may contain several pipelines, and each single pipeline
inside it may contain many data items or even pipelines. Furthermore, pipelines could be a branch,
a join or a complex combination of both. It is almost impossible to implement CLIPS/Ada pattern
matching relations to check all the combination of levels of those pipeline parent and child or even
grand child pipeline data relation facts, eventhough a few typical conditions for pipeline data are
considered in this thesis effort. For those errors detected, the expert system reminds the user to

check if that kind of error is caused by a pipeline data arrow.

In rule-based languages, the matching process takes place repeatedly. The fact-list is modified
during each cycle of execution. During each cycle, as "acts are added and removed, the set of rules
that are satisfied must be maintained and updated. Havin ¢ the inference engine check each rule to
direct the search for facts after each cycle of execution provides a very simple and straightforward
technique for solving this problem. The primary disadvantage of such a technique is that it can be
very slow due to the property called temporal redundancy. That is, the actions of a rule will
only change a few facts in the fact-list. Hence the facts in the expert systein change slowly over
time. Each cycle of execution may see only a cmall percentage of facts either added or removed
and so only a small percentage of rules are typically affected by the changes in the fact-list. Thus
having the rules drive the search for needed facts requires a lot of unnecessary computation since
most of the rules are likely to find the same facts in the current cycle as found in the last cycle.
Unnecessary recomputation could be avoided by remembering what has already matched from cycle
to cycle and computing only the changes necessary for the newly added or removed facts (10.502-

534). Unfortunately, it is not a property of the expert system shell, CLIPS/Ada (the Ada version

of CLIPS 4.3). The Ada version of CLIPS 4.3 is undergoing enhancement by Computer Science

Corporation in Houston, Texas.

All the facts created for a specific hierarchical IDEF, diagrams could be rather a large list.
It will take both time and memory to perform the associated syntax checking functions. So far,
the test program has 753 facts including activities that have 2, 3, 4, 5, and 6 child activities. It
is recommended that, once the Essential Model, Drawing Model and the Syntax Checking Expert
System of SAtool II has been proven to be applicable, the rules of the expert system are ‘fixed’.
Then the compiling of those rules should be implemented and stored before the user selects Check
Syntax to gain time efficiency. Up to this point, the syntax checking expert system correctly checks
the IDEF; diagrams syntax with single data elements. It also checks the consistencies of pipeline
data elements to a limited extent. The overall function of this syntax checking expert system is

achieved. The implementation of syntax checking expert system into SAtool 1I is proved feasible.

Recommendations

Based on the results and experiences of this study, this section presents some recommendations
for future research which could lead to enhance the capability of both the Essential Model arn. the

Syntax Expert System.

Boundary Single Data Item. The rules developed here so far to check single data items
between parent and child activities has been successful. It is not likely at this point that there is
a possibility to simplify the rules that already exist as a result of this research. If a different tool
does, than it should be used in order to simplify the rule base so it will be easier to understand

and be more efficient.

Boundary Pipeline Dala HIlems. As pipelines could be a very complex combination, not all

features are included here. More rules might be developed to feature the intermediate pipeline

data items, and check the consistency between parent activity and child activities where levels of

pipeline data item relations might exist.

Further IDEF, Diagrams Drawing Features. Some features of the IDEF, diagrams which are
not included in the Essential Model created in (16) and thus not considered in the syntax checking

rules are also suggested:

¢ Expand the functions of the Essential Model to include tunnel arrows. Develop rules to check

the consistency of those features of drawing information.

For instance, since a tunnel arrow does not have the information of the relationships between
the attaching activity and its parent box. A tunnel arrow attaching an activity should have
an ID to show that this arrow is a tunnel arrow. Thus the checking of consistency should
check whether a missing boundary data element between a parent and its child diagramsis a

tunnel, if it is, than it is not a boundary syntax error.

¢ Establish a mechanism either in Essential Model or in Drawing Model to represent squiggles,
double arrows (feedback, and iterauc) Expand syntax checking rules to include knowledge

about the specific application being developed.

o Modify the menu selection interface such that the user could make the selection directly from

the screen with a mouse.

e Use compiled rule base to improve efficiency of the syntax checking expert system.

87

10.

11.

12.

13.

14.

16.

17.

Bibliography

. Baker, Louis. Arttficial Intelligence With Ada. New York: McGraw-Hill Publishing Company,

Inc., 1989.

. Bell Atlantic Knowledge Systems, Inc. AI Get Real. Al Expert. P.O. Box 3528 Princeton,

New Jersey 08543-3528, 1991.

. Booch, Grady. Software Components with Ada. Menlo Park, California: The Ben-

jamin/Cummings Publishing Company, Inc., 1987.

. Booch, Grady. Software Engineering with Ade. 2727 Sand Hill Road Menlo Park, CA 94025:

The Benjamin/Cummings Publishing Company, In,., 1987.

. Bowles, Adrion J. “A Note on the Yourdon Structured Method,” ACM Software Engineering

Notes, 15(2):27 (April 1990).

. Brassard, G. and P. Bratley. Algorithmics, Theory and Practice. Englewood Cliffs, New Jersey

07632: Prentice Hall, 1988.

. Citrenbaum, Ronald and James R. Geissman. “Selecting a Shell,” AI Ezpert, 1(1):21-26

(September 1987).

. Cohen, Norman H. Ada As a Second Language. New York: McGraw-Hill Book Company,

1986.

. Davis, Alan M. Software Requiremenis Analysis and Specification. Englewood Cliffs, New

Jersey 07632: Prentice Hall, Inc., 1990.

Giarratano., Joseph. Ezperi Systems. 20 Park Plaza Boston, Massachusetts 02116: PWS-
KENT Publishing Company, 1989.

Humphrey, Watts S. Managing the Software Process. Menlo Park, California: Addison-Wesley
Publishing Company, 1990.

IntelliCorp. [IntelliCorp KEE Software Development System User’s Manual (3.3 Edition),
1986.

Johnson, Steven E. A Graphics Edilor for Struclured Analysis with a Data Dictionary.. MS
thesis, AFIT/GE/ENG/87D-128, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1987 (AD-A190618).

Jung, Capt(ROKAF) Donghak H. Design of a Syntaz Valdation Tool for Require-
menis Analysis Using Structured Analysis and Design Technique(SADT). MS thesis,
AFIT/GCS/ENG/88S-1, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1988 (AD-A202725).

. Kim, Capt(ROKAF) Intaek. Ezpert System in Soflware Engineering Using Structured Analysts

and Design Technique(SADT). MS thesis, AFIT/GCS/ENG/90J-2, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1990 (AD-A?77777).

Kitchen, Terry LeVere Captain USAF. An Object Oriented Design and Implementation
For The IDEF, Essential Data Model with An Ada Based Ezpert System. MS thesis,
AFIT/GCS/ENG/90D, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1990 (AD-A230814).

Korth, Henry F. and Abraham Silberschatz. Database System Concepts. New York: McGraw-
Hills, Inc, 1991,

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

Luger, George F. Artificial Intelligence and the Design of Expert Systems. 890 Bridge Parkway
Redwood City, California 94065: The Benjamin/Cummings Publishing Company, Inc., 1989.

Marca, David A. and Clement L. McGowan. SADT Structured Analysis and Design Technique.
New York: McGraw-Hill Book Company., 1988,

Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Com-
mand, Wright-Patterson AFB, OH 45433. Integrated Computer-Aided Manufacturing (ICAM)
Function Modeling Manual (IDEF;), June 1981. Contract F33615-78-C-5158 with SofTech,
Inc.

NASA - Johnson Space Center — Artificial Inteligence Section. CLIPS Reference Manual:
Version 4.3 of CLIPS, July 1989.

NASA - Johnson Space Center — Artificial Inteligence Section. CLIPS User’s Guide: Version
4.8 of CLIPS, August 1989.

Pearl, J. Heuristics. Menlo Park, California: Addison-Wesley Publishing Co., 1984.

Ross, Douglas T. “Structured Analysis (SA) : A Language for Communicating Ideas,” JEEE
Transactions on Software Engineering, SE-3(1):27 (April 1990).

Shlaer, Sally and Stephen J. Mellor. Objeci-Oriented Systems Analysis. Englewood Cliffs,
New Jersey 07632: Prentice Hall, Inc., 1988.

Sommerville, Ian. Software Engineering. Menlo Park, California: Addison-Wesley Publishing
Company, 1989.

Sommerville, Ian. Software Engineering: Third Edition. Reading MA: Addison-Wesley Pub-
lishing Company ., 1989.

Tevis, Jay-Evan J. Machine-Indepedent Ada Windows and Enhanced Graphics for SAtool I]..
MS thesis, AFIT/GCS/ENG/90D-?, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990 (AD-A2331239).

Tsai, Jeffrey J. P. and J. C. Ridge. “Intelligent Support for Specification Transformation,”
IEEE Software, 3(6):28-35 (December 1988).

Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1989.

39

AFIT/GCS/ENG/91-J

AN ADA BASED EXPERT SYSTEM
FOR
THE ADA VERSION OF SAtool 1I
VOLUME II: APPENDICES

THESIS

Min-fuh Shyong
Major, ROCAF

AFIT/GCS/ENG/91-J

Approved for public release; distribution unlimited

AFIT/GCS/ENG/91-]

AN ADA BASED EXPERT SYSTEM
FOR
THE ADA VERSION OF SAtool II

VOLUME II: APPENDICES

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment cf the
Requirements for the Degree of

Master of Science (Computer Systems)

Min-fuh Shyong, B.S.C.S.

Major, ROCAF

DECEMBER, 1990

Approved for public release; distribution unlimited

Table of Contents

Page
Tableof Contents i e it
Appendix A. CLIPS BEHAVIOR IN THE BLOCKS WORLD PROBLEM A-1
Appendix B. ESSENTIAL FACT UTILITIES B-1
Appendix C. CLIPSRULEBASE it C-1

Appendix D. SAMPLE ESSENTIAL MODEL IDEF; SYNTAX CHECKING SCRIPT

Appendix A. CLIPS BEHAVIOR IN THE BLOCKS WORLD PROBLEM

In this example, the two stack of blocks is represented as facts format in CLIPS. A single
block may be stacked upon another block. the goal of a complex blocks world program would be
rearrange the stacks of block into a goal configuration with the minimum number of moves. For

this purpose, two restrictions are made:

1. Only one primary goal is allowed and this goal can only be to move one block on top on
another block. If the goal is to move block x on top of block y, then move all blocks (if any)
on top of block x to the floor and all blocks (if any) on top of block y to the floor and then

move block x on top of block y.

2. Any goal must not have already been achieved. That is, the goal cannot be to move block x

on top of block y if block x is already on top of block y.

Now we follow the step by step method of building a program mentioned in Chapter 2.
First: writing pseudorules using English-like text. We can figure out that there are only four kinds
of possible conditions needed to achieve our goal.

1. When both the top of x and y are clear, move x on top of y directly.

2. When something on top of x, then move something on top of floor first before move x on top
Al

of y.

3. When something on top of y, then move something on top of floor first before move x on top

of y.

4. Move something on top of floor before the next move can be achieved.

In this case, x is considered as upper block and y is considered as lower block. Then the pseudo

code can be written as:

A-1

RULE Move-Directly

IF The goal is to move block 7upper on top of block ?lower and
block ?upper is the top block in its stack and
block ?lower is the top block in its stack,

THEN Move block 7upper on top of block 7lower

RULE Clear-Upper-Block

IF The goal is to move Block ?x and
block ?x is not the top block in its stack and
block ?above is on top of block ?x,

THEN The goal is to move block ?above to the floor

RULE Clear-Lower-Block

IF The goal is to move another block on top of block ?x and
block ?x is not the top block in its stack and
block ?above is on top of block 7x,

THEN The goal is to move block 7above to the floor

RULE Move-To-Floox

IF The goal is to move block 7upper on top of the floor and
block ?upper is the top block in its stack,

THEN Move block ?upper on top of the floor

Second: Based on the information given above, the blocks can be represented as stacks of
blocks and translated into initial knowledge for the program. The setting of the blocks is illustrated

in Figure n and its facts format is as follows:

(deffacts initial-state
(stack a b ¢)
(stack d e 1)
{move~goal ¢ on-top-of e)
(stack))

Finally: The pseuuorules were translated to CLIPS rules using the facts as a guide for

translation.

(defrule move-directly

A-2

A D
B E
C F

Floor

Figure A.1. Initial State of The Blocks World

?7goal <- (move-goal ?bi on-top-of 7b2)

?stack-1 <- (stack 7bt $?resti)

?stack-2 <- (stack ?b2 $7rest2)

=>

(retract ?goal ?stack-1 ?stack-2)

(assert (stack $7rest1))

(assert (stack ?b1 ?b2 $7rest2))

(fprintout t ?b1 " moved on top of " 7b2 "." crlf))

(defrule move-to~floor
7goal <- (move-goal 7bi on-top-of floor)
?stack-1 <- (stack ?bl $7rest)
=>
(retract ?goal 7stack-1)
(assert (stack 7bi))
(assert (stack $7rest))
(fprintout t 7bl " moved on top of floor. " crlf))

(defrule clear-upper-block
(move-goal 7bl on-~top-of ?)
(stack 7top $7 7bi $7)
=>
(assert (move-goal ?top on-top-of floor)))

(defrule clear-lower-block
(move-goal 7 on-top-of 7bi)
(stack 7top $7 7b1 $?)

A-3

=>
(assert (move-goal ?top on-top-of floor)))

Now lets see the results of running CLIPS for the Blocks World program. Any text after ;’

will be coments added.

CLIPS> (load "a:Blocks-World.clp")
Processing deffacts block initial-state
Compiling rule: move-directly +j+j+j
Compiling rule: move-to-floor +j+j
Compiling rule: clear-upper-block =j+j
Compiling rule: clear-lower-block =j+j
CLIPS> (facts)

CLIPS> (reset)

CLIPS> (facts)

£-0 (initial-fact)

-1 (stack a b ¢)

-2 (stack d e 1)

£-3 (move-goal c on-top-of e)
-4 (stack)

CLIPS> (rules)
move-directly
move-to-floor
clear-upper-block
clear-lower-block
CLIPS> (run)

a moved on top of floox.
b moved on top of flcor.
d moved on top of floor.
¢ moved on top of e.

7 rules fired

Run time is 1.5390625 seconds
CLIPS> (facts)

-0 (initial-fact)
-4 (stack)

£-6 (stack a)

-9 (stack b)

£-12 (stack d)

f-14 (stack ¢ e 1)

CLIPS> (set-break move-directly)
CLIPS> (set-break move-to-floox)
CLIPS> (set~break clear-upper-block)
CLIPS> (set-break clear-lower-block)
CLIPS> (watch all)

CLIPS> (reset)

==> f-0 (initial-fact)

==> f-1 (stack a b ¢)

A-4

==> -2 (stack d e f)

==> £-3 (move-goal ¢ on-top-of e)
==> Activation O clear-lower-block: £-3,f-2
==> Activation O clear-upper-block: £-3,f-1
==> f-4 (stack)
CLIPS> (run)
FIRE 1 clear-upper-block: £-3,f-1
==> £-§ (move-goal a on-top-of floox)
==> Activation O move-to-floor: f-5,f-1
Breaking on rule move-to-floor
1 rules fired
Run time is 0.328125 seconds
CLIPS> (run)
FIRE i move-to-floor: £-5,1-1
== £~5 (move-goal a on-top-of floor)
== £~1 (stack a b ¢)
==> £-6 (stack a)
==> £-7 (stack b ¢)
==> Activation 0 clear-upper-block: £-3,f-7

a moved on top of floor.

Breaking on rule clear-upper-block

1 rules fired

Run time is 1.8203125 seconds

CLIPS> (run)

FIRE 1 clear-upper-block: £-3,1-7

==> £-8 (move-goal b on-top-of floor)
==> Activation O move-to-floor: £-8,f-7
Breaking on rule move-to-floor

1 rules fired

Run time is 0.3828125 seconds

CLIPS> (run)

FIRE 1 move-to-floor: £-8,f-7

<== f-8 (move-goal b on-top-of floox)
<== £-7 (stack b ¢)
==> f-9 (stack b)

==> £-10 (stack c)

b moved on top of floor.

Breaking on rule clear-lower-block

1 rules fired

Run time is 1.59375 seconds

CLIPS> (run)

FIRE 1 clear-lower-block: £-3,f-2

==> f-11 (move-goal d on~top-of floor)
==> Activation 0 move-to-floor: f-11,f-2
Breaking on rule move-to-floor

1 rules fired

Run time is 0.328125 seconds

CLIPS> (run)

FIRE 1 move-to-floor: f-11,f-2

<== f-11 (move-goal d on~top-of floor)
<== f-2 (stack d e 1)

A-5

==> f-12 (stack d4)

==> £-13 (stack e f)

==> Activation O move-directly: £-3,f-10,{-13

d moved on top of floor.

Breaking on rule move-directly

1 rules fired

Run time is 1.703125 seconds

CLIPS> (xun)

FIRE 1 move-directly: £-3,£-10,£f-13
<== £-3 (move-goal ¢ on-top-of e)
== £-10 (stack ¢)

<== £-13 (stack e t)

==> f-14 (stack ¢ e f)

¢ moved on top of e.

1 rules fired

Run time is 0.4453125 seconds

CLIPS> (run)

0 rules fired

CLIPS> (facts)

£-0 (initial-fact)
-4 (stack)

£-6 (stack a)

£-9 (stack b)

£-12 (stack d)
£-14 (stack ¢ e £)
CLIPS> (agenda)
CLIPS> (reset)

==> -0 (initial-fact)

==> f-1 (stack a b ¢)

==> f-2 (stack d e £)

==> £-3 (move-goal ¢ on-top-of e)

==> Activation 0 clear-lower-block: £-3,f-2
==> Activation 0 clear-upper-block: f-3,f-1
==> -4 (stack)

A-G

Appendix B. ESSENTIAL FACT UTILITIES

DATE: 2/21/91 -=
VERSION: 1.0 -
TITLE: Essential Subsystem Essential Fact_Utilities Package --
FILENAME: es_factu.a -
COORDINATOR: Dr. Hartrum -
PROJECT: SAtool II -
OPERATING SYSTEM: SUN 0S Release 4.1 --
LANGUAGE: Verdix Ada Development System (VADS) - Version 5.41 --
FILE PROCESSING: Must be compiled after es_genev.a, es_proj.a, -
es_activ.a, es_datel.a, es_conof.a, es_ICOM.a, es_hista.a, -
es_calls.a --
CONTENTS: Package Essential_Fact_Utilaties -—
FUNCTICNS: This package contains two utility operations for each of--
the 7 packages that have a ‘manager’ in their names. -

SUMMARY OF RECENT MODIFICATIONS: --

27 Oct 90: Added routines to retrieve and restore the project name.--
10 Nov 90: Added routines to retrieve and restore a portion of the --
Activity Manager information. --
5 Dec 90 : Added routines to retrieve the Historical Activity Facts--
7 De~ 90 : Added routines to retrieve the Calls Relation Facts -
8 Dec 90 : Added routines to retrieve the Consists of Relation Facts-
8 Dec 90 : Added routines to retrieve the rest portion of the -
Activity Manager information. ~--

11 Dec 90: Added routines to retrieve and restore the data -=
element facts -

21 Feb 91: All the Retrieve and Restore procedures tested and -
integrated with the Essential Model. -

DATE: 2/21/91 --
VERSION: 1.0 -
PACKAGE NAME: **ESSENTIAL FACT UTILITIES#** -~
LOCATED iN FILE: es_factu.a --
PURPOSE: This package .s a collection of utility operations that --
interact with the managers. Each manager a 2 operations associ- ~--
ated with it: -
1. An operation that retrieves eithexr state information or --
information destined for CLIPS, based on a flag setting. -=

2. An operation that accepts state information as facts and -
restores that information to the manager data structure. -
Warning: The operations in this package depend heavily on the --
specific column numbers of the stored information. An alternative --

B-1

-- to this methodology is to develop a parser to examine the fact ~--
-- strings. -=
~- PACKAGE VISIBILITIES REQUIRED: Project_Manager, Activity_Manager, --
~- Data_Element_Manager, Consists_0Of_Relation_Manager, ICOM_Relation_ --
-~ Manager, Calls_Relation_Manager, Historical_Activity_Manager -
~- PACKAGE COMPOSITION: Specification and Body -
-- GENERICS INSTANTIATED: None -
-- ADT DESCRIPTION: N/A since this is a group of utilities. --

-- ORDER-OF: -
-- Vigible: Retrieve_ICOM_Facts 0(a * i) -
- (0(i) time when type_facts_flag = true) -
- Restore_ICOM_Facts 0(i * i) -
-~ Retrieve_Activity_Facts 0(a * max(x, z)) -
- Restore_Activity_Facts 0(a * max(x, a * z)) --
- Retrieve_Project_Facts 0(1) --
- Restore_Project_Facts 0(1) -
~- Hidden: Padded_String 0(The_Size) -

-- where i is the number of icom relations, a is the number of -
~-- activities, x is the number of lines in an activity description, --
-- and 2z is the number of children an activity has -
-~ AUTHOR(S): Terry Kitchen and Min-fuh Sny~ng -~
-~ HISTORY: None (initial implementation) -
with Text_IO;

with Activity_Class, Activity_Manager;

with Data_Element_Class, Project_Manager;
with ICOM_Relation_Class, ICOM_Relation_Manager;
with Environment_Types;

with Historical Activity_Class, Historical_Activity_Manager;
with Calls_Relation_Class, Calls_Relation_Manager;

with Consists_0f_Relation_Class, Consists_0f_Relation_Manager;
with Data_Element_Class, Data_Element_Manager;

package Essential_Fact_Utilities is

-- Based on the type_facts_flag, the procedure passes a list of facts

-- to be stored in a file or a list of facts to be placed in an expert

~- system.

R ST T LR R R L e e PR 2 T
procedure Retrieve ICOM_Facts

(Type_Facts_Flag : in boolean;

Fact_Manager : in out Environment_Types.Fact_Buffer_Package.Manager_Type);

-- Takes an input buffer of ICOM facts and loads the information back
-~ into the data structures.

procedure Restore_ICOM_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type);

e dokoook Rk kKR gk Rk kR ko ok Rokok 2 kool ok kol ak ook o ok o ok ok ok o ok o ok sk ok ok ok ak ok ok o ke e e ok ok

procedure Retrieve_Project _Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out Environment_Types.Fact_Buffer_Package.Manager_Type);

-- Takes an input buffer of project fact(s) and loads the information back
~~ into the data structure.

procedure Restore Project_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type);

== kkkkokkkokiopkckoRbkopkockkooe 3 ekspiololokokiok ok okok ok toR o R ok ok Rk ok
procedure Retrieve_Activity Facts

(Type_Facts_Flag : in boolean;

Fact_Manager : in out Environment_Types.Fact_Buffer_Package.Manager_Type);

-~ Takes an input buffer of activity facts and loads the information back
~~ into the Activity_Manager. It must be modified to restore all the
-- activity facts once the Retrieve_Activity_Facts operation is completed.

procedure Restore_Activity_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type);

-- The project manager at this time only stores a single name; however,
-- in the future it could hold multiple projects.

= okokaokooR R R ok koK ok ok koK ok ok Aok ok G ok ok ok ok ok ok ok ok o ok o skl s ke ok s ok e s ok s 3k sk ok o sk ok sk ok e koK ok K

procedure Retrieve_Data_Element_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

procedure Restore_Data_Element_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

kool ok ik ke ok ok ok ol ok ok ok ok ok ok ok kol e kol ok sk ok sokokok 5o ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ke ok ok ok ok ook ok ok ook sk ok ok ok ko ok ok ok
procedure Retrieve_Historical_Activity_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

B-3

procedure Restore_ Historical_Activity_.Facts
(The_Fact_Buffer: in
Favironment_Types.Fact_Buffer_Package.Manager_Type) ;

= ook kR Rk kOO Rk kR kR ok kokk 6 Aok okl Rk kol o 33 ook b ook o ok ok ek sk ookl e o ook ok ok ok ok A A3

procedure Retrieve_Calls_Relation_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

procedure Restore_Calls_Relation_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

—m kR kR ko kR kTR Kokok T skokolook kol skoR kR ook ok ook ook ko sk Ak sk ok ok ok ok o ok ok ko

procedure Retrieve_Consists_0f_Relation_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

procedure Restore_Consists_0f_Relation_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type) ;

package body Essential_Fact_Utilities is

-~ DATE: 10/23/90 --
-- VERSION: 1.0 -
-~ NAME: #4+%+xFUNCTION PADDED STRING****x -
-~ MODULE NUMBER: TBD -=
~-- DESCRIPTION: A utility function to pad blanks to the front of a --
-- of a string to reach a desired size. --
-~ ALGORITHM: A simple if then else Jith one embedded loop construct. --
—-- PASSED VARIABLES: The_String, The_Size --
~— RETURNS: string -
-- GLOBAL VARIABLES USED: None --
-- GLOBAL VARIABLES CHANGED: None --

B-4

~- FILES READ: None

-~ FILES WRITTEN: None

-- HARDWARE INPUT: None

-- HARDWARE OQUTPUT: None

-~ MODULES CALLED: None

-~- CALLING MODULES: TBD

-~ ORDER-OF: 0(The_Size)

-~ Hotc that all slice operations are modeled as 0(1) time.
-~ AUTHOR(S): Terry Kitchen

~- RISTORY: None (Initial Implementation)

function Padded_String(The_String : in string ; The_Size : in natural)
return string is

~- Local Derlarations --

Result_String: string(1..The_Size);

Start_Position: natural;

begin

if The_Size <= The_String’length then
Start_Position:= The_String’length - The_Size + 1;
-- Slice operation is modeled as 0(1) time.
Result_String:= The_String(Start_Position..The_String’length);

else
Start_Position:= The_Size - The_String’iength + 1;
Result_String(Start_Position..The_Size):= The_String;
-- worst case here - start_position is (The_Size - 2)
-~ Thus, 0(The_Size) time in the worst case.
for i in 1..(Start_Position - 1) loop

Result_String(i):= * ’;

end loop;

end if;

return Result_String;

end Padded_String;

-- DATE: 10/23/90

~- VERSION: 1.0

-~ NAME: **xPROCEDURE RETRIEVE ICOM FACTS***
-— MODULE NUMBER: TBD

~— DESCRIPTION:

- When the flag Type_ 0f_Facts_Flag is set to true,it means the
—-- client procedure wants all the facts that are necessary for

- the .esm file. If the flag is false, then the facts for

- the expert system are returned. Facts of the same type have
-- the same format no matter where they are destined. In this

-- case, one extra type of fact is returned if the destination

-- is the an expert system (icom count fact).

B-5

-- icom tuple facts: (retrieved when creating a .esm file or when -=
~- performing check syntax) -
~- 1) a predefined attribute name (icom-tuple) --
-- 2) an activity name -
-~ 3) a data element name —--
=~ 4) an icom code (i,c,0, or m) —-—
-- 5) and id number (an integer) -
-- icom count facts: (retrieved only when destination is CLIPS) -
-- 1) a predefined attribute name (e.g., icom-activity-inputs) -
-~ 2) an activity name --
-~ 3) an integer number representing the input count e.g. -
~- ALGORITHM: One while loo;. extracts the ICOM facts. A second loop --
~- which contains an 0(i) piucedure call is used to extract additional--
~~ facts based on the contents of two different managers. -
-~ PASSED VARIABLES: Type_Facts_Flag, Fact_Manager -
--~ RETURNS: None -
~-- GLOBAL VARIABLES USED: lone -
—~- GLOUBAL VARIABLES CHANGED: None -
-~ FILES READ: None --
=~ FILES WRITTEN: None -=
-— HARDWARE INPUT: None -
~— HARDWARE OUTPUT: None -
~—~ MODULES CALLSD: None -
-~ CALLING MODULE3: TBD -=
-- ORDER-OF: O0(a # i) where ‘a’ is the number of activities and ‘i’ --
-— is the number of tuples in the ICOM relation manager. -
-- Note that all slice operations are modeled as 0(1) time. -
-~ AUTHOR(S): Terry Kitchen -
- HISTORY: None (Initial Implementation) -

procedure Retrieve _ICOM_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out Environment_Types.
Fact_Buffer_Package.Manager_Type) is

-- Local Declarations --

Fact..Pointer: Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

Blank_Fact: Environment_Types.Fact_String_ Type:= (others => ' ');

-~ Activity Related Declarations --
Act_Name: Activity_Class.Activity_Name_Type;
The_Act_Record: Activity_Class.Activity_Record_Type;

~-- ICOM Related Declarations --

ICOM_Relation_Record: ICOM_Relation_Class.ICOM_Relation_Record_Type;
ICOM_Relation_Pointer: ICOM_Relation_Manager.ICOM_Relation_Pointer_Type;
ICOM_Code: character; -- a character ’i’, ’c’, ’'o’, or 'm’.
ICOM_Pair_Id: ratural;

Inputs, Outputs, Controls, Mechanisms : natural:= 0;

begin
~- Clear the passed in fact_manager.
Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);

-- Retrieve the state information from the tuples regardless of the
~-- flag setting.

-- Set pointer to beginning of manager.
ICOM_Relation_Manager.Reset_ICOM_Relation_.Tuple_Iterator;

-- Engage 0(i) loop to extract the icom_tuple facts. The facts
-- extracted will have the format discussed above. If there are
-- no ICOM tuples, this loop won’t execute and an empty buffer is the
~-- result.
While not ICOM_Relation_Manager.ICOM_Relation_Tuple_Iteratoxr_Done loop
-~ Get a record.
ICOM_Relation_Record:= ICOM_Relation_Manager.
Value_0f_ICOM_Relation_Tuple_At_Iterator;
-~ Place the record into a fact string at specific positions.
~-- Initialize the fact string to all blanks first.
-- All string assignments are modeled as 0(1).
A_Fact:= Blank_Fact;

A_Fact(1..10) := "icom-tuple';

A_Fact(11) 1= 0 0y

A_Fact(12..36) := ICOM_Relation_Record.Activity;
A_Fact(37) 1= 00

A_Fact(38..62) := ICOM_Relation_Record.Data_Element;
A_Fact(63) R

A_Fact(64) = ICOM_Relation_Record.Relationship;
A_Fact(65) iz 0

A_Fact(66..71) :
Padded_String(integer’image(ICOM_Relation_Record.Pair_Id), 6);

-~ Store this fact in the fact buffer.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);
-- Advance pointer to next ICOM tuple in manager.
ICOM_Relation_Manager.Advance_Iterator_To_Next_ ICOM_Reiation_Tuple;
end loop;

-— Facts for expert system only.
-- Perform check here to determine if ICOM counts are requested.
if Type_Facts_Flag = False then
-- For each activity, need to determine the number of inputs, outputs,
-- controls and mechanisms. So, engage loop to get an
-- activity name then use the name to determine the ICOM counts.
-- Loop executes a times with an 0(i) procedure call. Thus, the
-~ order-of is O(a * 1i).
Activity_Manager.Reset_Activity_Iterator;
while not Activity_Manager.Activity Iterator_Done loop
-- Get an activity record that contains a name.
The_Act_Record:= Activity_Manager.Value Of_Activity_At_lterator;

-- 0(i) procedure to count the "arrows" for this activity.
-- Note: if the ICOM mgr is empty, this procedure returns all
-~ zeross and does not examine the activity name.
ICOM_Relation_Manager.Value_Of_ICOM_Counts

(The_Act_Record.Name, Inputs, Controls, OQutputs, Mechanisms);

-~ Now must add the facts. (a better block of code is possible here)
-~ Place the record into a fact string at specific positions.
== Initialize the fact string to all blanks first.
~- All string assignments are modeled as 0(1).
==~ Add fact for number of inputs.
A_Fact:= Blank_Fact;
-- The padding of blanks in the first field is for aesthetic
== purposes only.
A_Fact(1..24) "icom-activity-inputs "y
A_Fact(25) =y
A_Fact(26..50) := The_Act_Record.Name;
A_Fact(51) 1=,
A_Fact(52..57) := Padded_String(integer’image(Inputs), 6);
~-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

1

-~ Add fact for number of controls. 0(1) time.
A_Fact:= Blank_Fact;

A_Fact(1..24) := "icom-activity-controls *;
A_Fact(25) =0
A_Fact(26..50) := The_Act_Record.Name;

1

A_Fact(51)
A_Fact(52..57) := Padger String(integer’image(Controls), 6);
-- Store this fact in the fact buffer.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

-- Add fact for number of outputs. O0(1) time.
A_Fact:= Blank_Fact;

A_Fact(1..24) := "icom-activity-outputs ";
A_Fact(25) =000
A_Fact(26..50) := The_Act_Record.Name;

I

A_Fact(51) 1= 0
A_Fact(52..57) := Padded_String(integer’image(Outputs), 6);
-~ Store this fact in the fact buffer.
Environment _Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~-- Add fact for number of mechanisms. 0(1) tims.
A_Fact:= Blank_Fact;

A_Fact(1..24) := "i1com-activity-mechanisms";
A_Fact(25) =
A_Fact(26..50) := The_Act_Record.Name;

A_Fact(51) 1= 0y

B-§

A_Fact(52..57) := Padded_String(integer’image(Mechanisms), 6);
-~ Store this fact in the fact buffer.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

-- Advance Activity_Manger iterator to next activity record.
Activity_Manager.Advance_Iterator_To_Next_Activity;
end loop;
end if;

end Retrieve_ICOM_Facts;

-- DATE: 10/02/90

-- VERSION: 1.0

- - NAME: *%*PROCEDURE RESTORE ICOM FACTS##**
~- MODULE NUMBER: TBD

~- DESCRIPTION: Restores the icom facts into the ICOM Relation Manager--

-~ ALGORITHM: A single while loop controls the execution with an
-- embedded call to an 0(i) procedure.

-- PASSED VARIABLES: The_Fact_Buffer (contains the icom facts)
~- RETURNS: None

-~ GLOBAL VARIABLES USED: None

-~ GLOBAL VARIABLES CHANGED: None

-- FILES READ: None

~-= FILES WRITTEN: None

-~ HARDWARE INPUT: None

-~ HARDWARE OUTPUT: None

-- MODULES CALLED: None

—-— CALLING MODULES: TBD

-- ORDER-OF: O0(i * i) where i is the number of facts in the fact
-- buffer which should be the same as the no. of ICOM tuples; the
-- of ICOM tuples is represented by an ‘i’.

-- Note that all string slice operations are modeled as 0(1) time.
~- AUTHOR(S): Terry Kitchen

-- HISTORY: None (Initial Implementation)

procedure Restore_ICOM_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type) is

-~ Local Declarations —--

Fact_Pointer: Environment_Types.Fact_Buffer_ Package.Iterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

First_Char: natural:= 0;

Char_Position: natural:= 0;

Temp_Pos: natural:= 0;

-- ICOM Related Declarations —-
ICOM_Relation_Record: ICOM_Relation_Class.ICOM_Relation_Record_Type;

B-9

ICOM_Relation_Pointer: ICOM_Relation_Manager.ICOM_Relation_Pointer_Type;
Null_ICOM_Record: ICOM_Relation_Class.ICOM_Relation_Record_Type;

begin

=~ Check for empty buffer of facts. If empty, do nothing.

it Environment_Types.Fact_Buffer_Package.Is_Empty(The_Fact_Buffer) then
return;

end if;

-- Initialize iterator to first tuple/fact.
Environment_Types.Fact_Buffer_Package.Initialize_Iterator
(Fact_Pointer, The_Fact_Buffer);

-~ Engage loop to extract the icom_tuple facts from a buffer
-- one at a time. This loop is 0(i) time.
While not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop
-- Gat a record.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);
~-= Since we put the information in the string, we know the
-- exact columns where information should be.
-- All string assignments are modeled as 0(1);
-~ Insure the fields are all blanks.
ICOM_Relation_Record:= Null_ICOM_Recora;

-~ Retrieve the fields from the fact string.
ICOM_Relation_Record.Activity:= A_Fact(12..36);
ICOM_Relation_Record.Data_Element:= A_Fact(38..62);
ICOM_Relation_Record.Relationship:= A_Fact(64);
ICOM_Relation_Record.Pair_Id:= integer’value(A_Fact(66..71));

-- Load this fact back into the ICOM manager. O0(i) procedure call.
ICOM_Relation_Manager.Create_ICOM_Relation_Tuple
(ICOM_Relation_Record, ICOM_Relation_Pointer);

== Advance pointer to next ICOM tuple in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
end loop;
end Restore_ICOM_Facts;

-- DATE: 10/27/90 --

-~ VERSION: 1.0 --
-- NAME: ***%PROCEDURE RETRIEVE PROJECT FACTS### --
~- MODULE NUMBER: TBD -
-~ DESCRIPTION: -~

-~ When the flag Type_Of_Facts_Flag is set to true,it means the --
- client procedure wants all the facts that are necessary for --
- the .esm file. If the flag is false, then the facts for -

-- the expert system are returned. Facts of the same type have --

-= the same format no matter where they are destined. In this --
- case, the project name is but a single fact. Future --
== modifications to SAtool II could include more information in --

- the Project_Manager however, thus this procedure is of use. --

-~ icom tuple facts: (retrieved when creating a .esm file or when
~~ performing check syntax)

-- 1) a predefined attribute name (project-name)

-- 2) the project name (if the name is null, the word ‘null’ is
- placed in the field.

-~ ALGORITHM: All simple 0(1) statements and 2 0(1) procedure calls., -~

-- PASSED VARIABLES: Type_Facts_Flag, Fact_Manager
-~ RETURNS: None

-- GLOBAL VARIABLES USED: None

~~ GLOBAL VARIABLES CHANGED: None

~- FILES READ: None

-- FILES WRITTEN: None

-- HARDWARE INPUT: None

~- HARDWARE OUTPUT: None

-~ MODULES CALLED: None

-- CALLING MODULES: TBD

-- ORDER-OF: 0(1)

~-- AUTHOR(S): Terry Kitchen

~- HISTORY: None (Initial Implementation)

procedure Retrieve_Project_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out Environment_Types.
Fact_Buffer_Package.Manager_Type) is

~- Local Declarations —-

Fact_Pointer: Environment_Types.Fact_Buffer_Package.Ilterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

Blank_Fact: Environ:..:nt_Types.Fact_String_Type:= (others => ’ ’);

-~ Project Related Declarations --
Project_Name: Environment_Types.Project_Name_Type;

begin
-- Clear the passed in fact_manager.
Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);

-- For the Project Manager, the same information is returned

-- regardless of the flag setting. The parameters are still used
~- however in case future modifications will need them.
Project_Name:= Project_Manager.Value_0f_Project_Name;,

—-- Check for blanrk name. If it’s blank, give it the name ‘null’.
~- The then part should never execute i7 SAtool II forces the user
-- to always assign a name to a project.

if Project_Name = Environment_Types.Null_Project_Name then

B-11

Project_Name:= "null "
end if;

-- Create the fact. All 0(1) time.
A_Fact:= Blank_Fact;
A_Fact(1..12):= "project-name";
A_Fact(13):= * *;

A_Fact(14..38):= Project_Name;

-- Store this fact in the fact buffer. Just one fact. No loop.
-- 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer):

end Retrieve_Project_Facts;

-- DATE: 10/27/90
-~ VERSION: 1.0

~= NAME: **xPROCEDURE RESTORE PROJECT FACTS#*x*
-- MODULE NUMBER: TBD
—-- DESCRIPTION:

-- ALGORITHM: All 0(1) statements and procedure calls.

~- PASSED VARIABLES: The_Fact_Buffer (contains the project fact)
== RETURNS: None

-- GLOBAL VARIABLES USED: None

-— GLOBAL VARIABLES CHANGED: None

-~ FILES READ: None

-~ FILES WRITTEN: None

~- HARDWARE I.IPUT: None

~- HARDWARE OUTPUT: None

~~ MODULES CALLED: i one

-~ CALLING MODULES: TBD

-- ORDER-OF: 0(1)

-- Note that all string slice operations are modeled as 0(1) time.
—-- AUTHOR(S): Terry Kitchen

-~ HISTORY: None (Initial Implementation)

procedure Restore_Project_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager_Type) is
~= Local Declarations --
Fact_Pointer: Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact: Environment_Types.Fact_String_Type;
First_Char: natural:= 0;

-- Project Related Declarations --
Project_Name: Environment_Types.Project_Name_Type;

begin
~~ Check for empty buffer of facts. If empty, do nothing.

B-12

it Environment_Types.Fact_Buffer_Package.Is_Empty(The_Fact_Buffer) then

return;

end if;

Initialize iteratcr to first tuple/fact.

Environment_Types.Fact_Buffer_Package.Initialize_Iterator

(Fact_Pointer, The_Fact_Buffer);

Get a record. There is only one fact! 0(1) call.

A_Fact:= Environment_Types.fFact_Buffer_Package.Value 0f_Item

(Fact_Pointer);

Ve know that the project name starts in column 14 at this point.

First_Char:= 14;

Since there is only one field of data, no looping is necessary.
The remaining characters after the project name are blank.

Project_Name:= A_Fact(First_Char..38);

Need to check if the project name was null.

If the name is null, we do nothing, since the Project_Manager
initializes the project name to all blanks anyway.
Project_Name(1..4) = "null" then

null;

else

-- Load the project name back into the manager.
Project_Manager.Set_Project_Name(Project_Name);

end if;
end Restore_Project_Facts;

DATE: 2/19/91
VERSION: 1.0
NAME: **%xPROCEDURE RETRIEVE ACTIVITY FACTS#**
MODULE NUMBER: TBD
DESCRIPTION:
When the flag Type Of_Facts_Flag is set to true,it means the
client procedure wants all the facts that are necessary for
the .esm file. If the flag is false, then the facts for
the expert system are returned.
Note that this procedure only handles a subset of the activity
facts: the activity name, number, and description. The remaining
facts must still) be retrieved!
Activity facts format for .esm file:
Note that if an activity name exists, then the other fields
will be filled with a straing called ‘‘null’’ if they are empty.
(act-name ‘‘activity name’’)
(act-numb ‘‘activity name’’ ‘‘activity number’’)
(act-desc ‘‘activity name’’ ‘‘wordi’’ ‘‘word2’’ etc.)

B-13

-- The last fact is repeated for each line of the description. -

~~ Activity facts format for CLIPS: -
-- Note that CLIPS does NOT need to check the description. Therefore,--
-- just pass it a fact with ‘‘null’’ or ‘‘not-null’’ to save space in --
-- the working memory. -~
- (act-name ‘‘activity name’’) --
-- (act-numb ‘‘activity name’’ ‘‘activity number’’) -
-- (act-desc ‘‘activity name’’ ‘‘not-null’’) -
-~ As with the facts for the .esm file, if any of the fields are empty--
== the word ‘‘null’’ is inserted instead. -
~~ ALGORITHM: One outer loop that iterates through the activities --
~- contains simple if then else constructs and one inner loop. These -~
-~ mechanisms contain scviral O0(1) function calls to the activity -
-~ manager to retrieve information. ~--
~= PASSED VARIABLES: Type_Facts_Flag, Fact_Manager -
-= RETURNS: None --
-- GLOBAL VARIABLES USED: None --
~~ GLOBAL VARIABLES CHANGED: None -
-~ FILES READ: None -
~=~ FILES WRITTEN: None -
~=- HARDWARE INPUT: None --
~— HARDWARE OUTPUT: None --
~~ MODULES CALLED: Several Activity Manager procedures and functions, --
-~ plus some Text_Buffer_Package operations. --
~= CALLING MODULES: Essential_I0.Save_Project, Clips_Working_ Memory_ --
~~ Interface.Assert_All_Facts --
-~ ORDER-OF: O(a* max(x,z) where a = # activities, and x is -
~=~ the number of lines in a description, and z = # of activ children. --
-~ Note that all slice operations are modeled as 0(1) time. -
-- AUTHOR(S): Terry Kitchen and Min-fuh Shyong --
-- HISTORY: None (Initial Implementation) --

procedure Retrieve_Activity_Facts
(Type_Facts_Flag : 1in boolean;
Fact_Manager . in out Environment_Types.
Fact_Buffer_Package.Manager_Type) is

-- Local Declarations --
Fact_Pointer: Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

Blank_Fact: Environment_Types.Fact_String Type:= (othexrs => ’ ’);

~= Activity Related Declarations --

Act_Name ¢ Activity_Class.Activity_Name_ Type;

The_Act_Record : Activity_Class.Activity_Record_Type;

The_Iterator : Environment _Types.Text_Buffer_Package.Iterator_Type;
Child_Itexator : Environment_Types.Data_Buffer_Package.Ilterator_Type;

B-14

A_Description_Line
A_Chilad

Environrent_Types.DD_Text_Type;
Environment_Types.DD_Field_Type;

ve oa

-- **%*x Added new facts 120390 ***—~-
Reference_Iterator : Environment_Types.Text_Buffer_ Package.Iterator_Type;
A_Reference_Line : Environment_Types.DD_Text_Type;

-~ *%** Added new Vars fcxr version changes *#¥x*

Version_Iterator ¢ Environment_Types.Text_Buffer_Package.Ilterator_Type;
Version_Line ¢ Environment_Types.DC_Text_Type;

begin
-- Clear the passed in fact_manager. 0(1) time.
Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);

-- Set pointer to beginnin~ of manager. O0(1) time.
Activity_Manager .Reset_Activity_Iterator;

-~ Engage loop to extraci the facts associated with an activity. The
~~ facts extracted will have the format discussed above. If there are
== no activities, this loop won’t execute and an empty buffer is the
-- result.

~-- This loop runs a times where a is the number of activities. At this
~—- time there is only one inner loop of 0(x) time. Thus, the time

-- complexity is 0(a * x).

while not Activity_Manager.Activity_Iterator_Done loop
-- Get a record. 0(1) time.
The_Act_Record:= Activity Manager.
Value_Of_Activity_At_Iterator;

~- Regardless of the Type_Facts_Flag setting, the activity name is
-~ always added to the fact buffer.

-- Place the activity name into a fact string at specific positionms.
~-- Initialize the fact string to all blanks first.

-- All string assignments are modeled as 0(1).

== *x**Create Activity Name Fact**x=*

A_Fact:= Blank_Fact;

A_Fact(1..8) := "act~name";

A_Fact(9) = 0

A_Fact(10..34) := The_Act_Record.Name;

-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

~— *xx**Create Activity Number Fact**#**

B-15

A_Fact:= Blank_Fact;

A_Fact(1..8) := "act-numb";

A_Fact(9) 1= 0 0,

A_Fact(10..34) := The_Act_Record.Name;
A_Fact(36) = 1 0

-- This if then construct determines what goes into the last field.
-- If the activity number is not null then create a fact with the
-- activity number in it. Flag setting doesn’t matter here.
if The_Act_Record.Number /= Activity_Class.Null_Activity_Number then
-~ All statements modeled as 0(1) time.
A_Fact(36..55) := The_Act_Record.Number;
else
-- The activity number is null, so create a null fact for
-- either the .esm file or the expert system. Again, the flag
-~ setting does not matter. All 0(1) time.
A_Fact(36..39) := "null";
end if;

-~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- #»*xx*Create one or more Activity Description Facts*k**

-- If the activity description is null then only a single fact is

-~ created regardless of the flag setting.

if Environment_Types.Text_Buffer_Package.Is_Empty
(The_Act_Record.Description) then

-- Create a null fact.
A_Fact:= Blank_Fact;

A_Fact(1..8) := "act-desc";

A_Fact(9) =00

A_Fact(10..34) := The_Act_Record.Name;
A_Fact(35) 1=) 0y

A_Fact(36..39):= "null";

-~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~- A false flag setting means the fact is for the expert system.
-- For a description, we don’t want the whole description in the
-- working memory, so just store a "not-null" string!

elsif Type_Facts_Flag = False then

-- Create a fact that shows the description is not null.
A_Fact:= Blank_Fact;

A_Fact(1..8) := "act-desc";

A_Fact(9) A

A_Fact(10..34) := The_Act_Record.Name;

B-16

A_Fact(35) =y
A_Fact(36..43):= "not-null";

Store this fact in the fact buffer. 0(1) time.

Environment_Types.Fact_Buffer_ Package.Add_Item

else

(A_Fact, Fact_Manager, Fact_Pointer);

At this point we know the flag is true which means the fact
is to go to the .esm file. However, there may be multiple lines
in the description thus a loop is required.

Set iterator to first line of description.

Environment_Types.Text_Buffer_Package.Initialize_Iterator

(The_Iterator, The_Act_Record.Description);

Engage loop to get each line of the description and
make it a fact. This loop is 0(x) time where x is the
number of lines in the description.

while not Environment_Types.Text_Buffer_Package.Is_Done

(The_Iterator) loop

-- Retrieve a single line of text. O0(1) time.
A_Description_Line:= Environment_Types.Text_Buffer_Package.
Value_Of_Item(The_Iterator);

~- Create a fact representing a single line of the description.
A_Fact:= Blank_Fact;

A_Fact(1..8) := “act-desc";

A_Fact(9) =0 0

A_Fact(10..34) := The_Act_Record.Name;
A_Fact(35) I

A_Fact(36..95):= A_Description_Line;

-~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

—-- Advance pointer by one to next line.
Environment_Types.Text_Buffer_Package.Get_Next(The_Iterator);

end loop;
end if;

-- If

the activaty child list is null then only a single fact is

-- created regardless of the flag setting.
if Envaronment_Types.Data_Buffer_Package.Is_Empty
(The_Act_Record.Children) then

Create a null fact.
A_Fact:= Blank_Fact;

A_Fact(1..13) := "act-has-child";
A_Fact(14) = Y,

A_Fact(15..39) := The_Act_Record.Name;
A_Fact(40) =)

A_Fact(41..44):= "null";

~- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- At this point, regardless of the flag setting, all the children
-- are put into the fact buffer. Thus, the same facts go to
~- either the .esm file or the expert system.
else
-- Set iterator to first child in list.
Environment_Types.Data_Buffer_Package.Initialize_Iteratoxr
(Child_Iterator, The_Act_Record.Children);

-~ Engage loop to get each child and

-~ make it a fact. This loop is 0(z) time where z is the

-- number of children.

while not Environment_Types.Data_Buffer Package.Is_Done
(Child_Iterator) loop

-- Retrieve a single line of text. 0(1) time.
A_Child:= Environment_Types.Data_Buffer_Package.
Value_Of_Item(Child_Iterator);

-- Create a fact representing a single line of the descr ption.
A_Fact:= Blank_Fact;

A_Fact(1..13) := "act-has-child";

A_Fact(14) iz

A_Fact(15..39) := The_Act_Record.Name;

A_Fact(40) '

A_Fact(41..65):= A_Child;

-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- Advance pointer by one to next line.
Environment_Types.Data_Buffer_Package.Get_Next(Child_Iterator);
end loop;
end if;

-- Advance pointer to next activity in manager.
-~ Activaty_Manager.Advance_Iterator _To_Next_Activity;

-— Should This be at the end of Retrieve Activity??

e AR AAR AR AR A A KA AR A A K A AR KK A oAk oK K S K o K
—-- sxxkxxxx*x Added new facts from Activity Reference Type 12/08/90 *xk#xx*

B-18

~~ skkkkxkik* Author: Min-fuh Shyong Rk ok
== #kxkkkkak Create Activity reference type facts ook kR ook ok kokok ok
== sekakokakokskoksok sk sk ok ook ko sk Aok ok ok ok sk ok Kok ok sk okl ok sk Ak ok o ok ko ok ok

A_Fact = Blank_Fact;
A_Fact(1..12) := "act-ref-type";
A_Fact(13) 1= 0 0y

A_Fact(14..38) := The_Act_Record.Name;
A_Fact(39) AR

it The_Act_Record.Reference_Type /= Environment_Types.Null_Reference_Type then
A_Fact(40..64) := The_Act_Record.Reference_Type;

else
A_Fact(40..43) := "null";
end if;

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~- (act-ref-type Name Reference_Type) or
-- (act-ref-type Name null)

~— *#* Create one or more activity reference facts =

-- if the activity reference is null then only a single fact is created
-- regardless of the flag setting

if Environment_Types.Text_Buffer_package.Is_Empty
(The_Act_Record.Reference) then
-— true it is empty

A_Fact = Blank_Fact;
A_Fact(1..7) = "act-ref";

A_Fact(8) I

A_Fact(9..33) := The_Act_Record.Name;
A_Fact(34) =00

A_Fact(35..38) :

"null";
-~ (act-ref Name null)

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

elsif Type.Facts_Flag = false then

A_Fact := Blank_Fact;
A_Fact(1..7) := "act-ref";
A_Fact(8) := * ?;

A_Fact(9..33) := The_Act_Record.Name;

B-19

A_Fact(34) := * 7,
A_Fact(35..42) := "not-null";

-~ (act-ret Name not-null)
Environment_Types.Fact_Buffer Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

else
-- flag is true the file to .esm file, may be multiple line of
-~ reference so need a loop to get it
[}

Environment_Types.Texﬁ_Butter_Package.Initialize_Iterator
(Reference_Iterator, The_Act_Record.Reference);

-~ Engage a loop to get each line of the reference and make it a fact

while not Environment_Types.Text_Buffer_ Package.Is_Done
(Reference_Iterator) loop

A_Reference_Line :=
Environment_Types.Text_Buffer_Package.
Value_0f_Item(Reference_Iterator);

A_Fact := Blank_Fact;

A_Fact(1..7) := “act-ref";

A_Fact(8) := * ’;

A_Fact(9..33) := The_Act_Record.¥ame;
A_Fact(34) := * *;

A_Fact(35..94) := A_Reference_Line;

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

Environment_Types.Text_Buffer_Package.Get_Next(Reference_Iterator);
end loop;
end if; ~- (act-ref Name Reference-Linel)

-- (act-ref Name Reference-Line2)

== wkkkkkkkk Create Activity Version facts skkxckiksiokiookiokkdkkkioks

A_Fact = Blank_Fact;
A_Fact(1..11) := "act-version";
A_Fact(12) =0 0

A_Fact(13..37) := The_Act_Record.Name;
A_Fact(38) iz 0

if The_Act_Record.Version /= Activity_Class.Null_Activity_Version_number then
A_Fact(39..48) := The_Act_Record.Version;

B-20

else
A_Fact(39..42) := "null";
end if;

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- (act-version Name Activity-Version) or
~- (act-version Name null)

~~ *** Create one or more activity Version-Changes facts

~- if the activity version changes is null then only a single
-~ fact is created regardless of the flag setting

if Environment_Types.Text_Buffer_package.Is_Empty
(The_Act_Record.Version_Changes) then
-- true it is empty

A_Fact := Blank_Fact;
4_Fact(1..11) 1= "act-ver-chg";
A_Fact(12) = 0

A_Fact(13..37) := The_Act_Record.Name;
A_Fact(38) 1= 0 0,

A_Fact(39..42) := "null";

Environment_Types.Fact_Buffer_Package,Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

elsif Type_Facts_Flag = false then

A_Fact := Blank_Fact;

A_Fact(1..11) := "act-ver-chg";
A_Fact(12) := * *;

A_Fact(13..37) := The_Act_Record.Name;
A_Fact(38) := * ’;

A_Fact(39..46) := "not-null";

Envaironment _Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

else -~ version not empty show the version changes to .esm --
Environment_Types.Text_Buffer_Package.Initialize_Iterator
(Version_Iterator, The_Act_Record.Version_Changes);

~-- Engage a loop to get each version of changes and make it a fact

while not Environment_Types.Text_Buffer _Package.Is_Done

B-21

(Version_Iterator) loop

Version_Line :=

Environment_Types.Text_Buffer_Package.Value_Of_Item(Version_Iterator);

A_Fact t= Blank_Fact;
A_Fact(i..11) := "act-ver-chg";

A_Fact(12) := ' 2,
A_Fact(13..37) := The_Act_Record.Name;
A_Fact(38) := ' 1,

A_Fact(39..98) := Version_Line;

-~ (act-ver-chg Name null)
-~ (act-ver-chg Name Version-changes)

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

Environment_Types.Text_Buffer_Package.Get_Next(Version_Iterator);

end loop;
end if;

—— ****Create Activity Date Fact ##*x*
A_Fact:= Blank_Fact;
A_Fact(1..8) := "act-date";

A_Fact(9) N
A_Fact(10..34) := The_Act_Record.Name;
A_Fact(35) HC

if The_Act_Record.Date /= Environment_Types.Null_Date then
A_Fact(36..43) := The_Act_Record.Date;

else
A_Fact(36..39) := "null";

end if;

~-- Store this date fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buifer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-~ (act-date Name mm/dd/yy)
-~ (act-date Name null)

- **kkkCreate Activity Author Factkske———mm—coommm

A_Fact:= Blank_Fact;
A_Fact(1..10) := "act-author";

B-22

A_Fact(11) =1y
A_Fact(12..36) := The_Act_Record.Name;
A_Fact(37) =0y

-- This if then construct determines what goes into the last field.
-- If the activity author is not null then create a fact with the
~-- activity author in it. Flag setting doesn’t matter here.

it The_Act_Record.Author /= Environment_Types.Null_Author_Name then
-- All statements modeled as 0(i) time.
A_Fact(38..62) := The_Act_Record.Author;

else
-~ The activity author is null, so create a null fact for
-~ either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.
A_Fact(38..41) := "null";

end if;

-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- Advance pointer to next activity in manager.
Activity_Manager.Advance_Iterator_To_Next_Activity;

end loop;

~— Outer loop for Retrieve_Activity_Facts; ¥k#kkixkikkikk

end Retrieve_Activity_Facts;

DATE: 2/19/91 -
VERSION: 1.0

NAME: ***PROCEDURE RESTORE ACTIVITY FACTS*#**

MODULE NUMBER: TBD

DESCRIPTION: This procedure accepts a buffer of activity facts and
restores that information into the activity manager. Of special
note is that the procedure assumes the facts are in the same order
in which they were stored.

ALGORITHM: A single while loop controls the execution with an
embedded call to an 0(i) procedure.

PASSED VARIABLES: The_Fact_Buffer (contains the facts)

RETURNS: None

- GLOBAL VARIABLES USED: Nonse

GLOBAL VARIABLES CHANGED: None
FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

B-23

-- MODULFS CALLED: None -
~- CALLING MODULES: Essential_IO.Restore_ Project -
~- ORDER-OF: order of is O(a * max (x, z * (a * z))) where a is the --
-- number of activities, x is the number of lines in a description -
—- and z is the number of children that an activity has. Note that --
~- this order of may change when more of the activity manager facts --
-~ are restored. —--
-~ Note that all string slice operations are modeled as 0(1) time. -
-~ AUTHOR(S): Terry Kitchen and Min-fuh Shyong —=
-~ HISTORY: None (Initial Implementation) --

- o e o

procedure Restore_Activity_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager Type) is

-- Local Declarations --

Fact_Pointer: Environment_Types.Fact_Buffer_Package.lterator_Type;

A_Fact: Environment_Types.Fact_String_Type;

First_Char: natural:= 0;

Char_Position: natural:= 0;

Temp_Pos: natural:= 0;

More_Descriptions_Flag: boolean;

-- Activity Related Declarations --

Activity_Record: Activity_Class.Activity_Record_Type;
Activity_Pointer: Activity_Manager.Activity_Pointer_Type;
Null_Activity_Record: Activity_Class.Activity_Record_Type;

The_Iterator: Environment_Types.Text_Buffer_Package.Ilterator_Type;

A_Description_Line: Environment_Types.DD_Text_Type;
A_Child: Environment_Types.DD_Field_Type;

A_Reference_Line : Environment_Types.DD_Text_Type;
Version_Line : Environment_Types.DD_Text_Type;

Found_Flag: boolean:= False;
Result_Flag: boolean;

-~ Exception --
-- This exception is declared here because the Essential IO package does
-- not check to see the facts are in any specific order.

Invalid_Fact_Sequence_For_Activity: exception;
Activity_Hierarchy_Error_During_Restore: exception;

begin

~~ Check for empty buffer of facts. If empty, do nothing.

if Environment_Types.Fact_Buffer_Package.Is_Empty(The_Fact_Buffer) then
return;

B-24

end if;

Initialize iterator to first fact.

Environment_Types.Fact_Buffer_Package.Initialize_Iterator

(Fact_Pointer, The_Fact_Buffer);

Engage loop to extract the activity facts from a buffer

one at a time. This loop will execute a times ~- once for
each activity. Note that there are many facts associated with
a single activity. This loop runs a times. The loop has one
inner loop of order x and one procedure call of (a * z). Thus,
order of is 0(a * max (x, z*(a *x z)))

While not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop

-~ Get a record.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer):

—- Since we put the information in the string, we know the

-~ exact columns where information should be.

-~ All string assignments are modeled as 0(1);

-~ Insure the fields are all blanks.

Activity_Record:= Null_Activity_Record;

~~ The first fact should be the name.
if A_Fact(1..8) /= "act-name" then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-name ")
raise Invalid_Fact_Sequence_For_Activity;
end if;

~~ The activity name must be in columns 10 through 34.
Activity_Record.Name:= A_Fact(10..34);

-- Check to see if activity already exists. 0(a) call.

Activity_Manager.Activity_Exists(Activity_Record.Name,
Activity_Pointer, Found_Flag);

if Found_Flag = False then
-- Do O{a * z) procedure call to create an activity.
Activity_Manager.Create_Activity

(Activity_Record.Name, Activity_Poainter);
end if;

—-- Advance pointer to next fact in manager. 0(1).

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-~ Get a fact. 0(1) time.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);

-~ This fact should be the activity number.
if A_Fact(1..8) /= "act-numb" then
Text_J0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-numb ")
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Columns 10 through 34 must be the same activity name.
if A_Fact(10..34) /= Activity_Record.Name then
Text_J0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act—numb.Name "),
raise Invalid_Fact_Sequence_For_Activity;
end if;

-~ Columns 36 through 56 hold the activity number if it is
== not null.
it A_Fact(36..39) = "null" then
-- Do nothing, there was no activity number.
null;
else
-= Get the number.
Activity_Record.Number:= A_Fact(36..55);
-- Do 0(1) procedure call to update the activity in the activity
-- manager.
Activity_Manager.Set_Activity_Number
(Activity_Pointer, Activity_Record.Number);
end if;

—-= Advance pointer to next fact in manager.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If the fact buffer is empty at this point there is an error

== in the format.

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-name Is_Done "),
raise Invalid_Fact_Sequence_For_Activity;

end if;

-- Get a fact.

A_Fact:= Environment_Types.Fact_Buffer Package.Value_Of_Item
(Fact_Pointer);

-~ The series of fact(s) should be the activity description.

-- There is at least one act-desc fact and possible more.

if A_Fact(1..8) /= "act~desc" then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-desc "),
raise Invalid_Fact_Sequence_For_Activity;
end if;

~-- Columns 10 through 34 must be the same activity name.

if A_Fact(10..34) /= Activity_Record.Name then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-desc.Name ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

~- If the description is null then we are done with this attribute.
-~ Need only to advance the pointer by one for the outer loop.
if A _Fact(36..39) = "null" then
-- There is no description for the activity, so just advance
-- the fact pointer.
~-- Advance pointer to next fact in manager. 0(1) time.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

else
-~ There must be one or more lines in the description.
-- This loop will run x times where x is the number of lines in the
-- description.
while A_Fact(1..8) = "act-desc" loop
—-- I realize this check is repetitive on the first iteration.
== Columns 10 through 34 must be the same activity name.
-- 0(1) time complexity.
if A_Fact(10..34) /= Activity_Record.Name then
Text_I0.Put_Line(A_Fact);

Text_I10.Put_Line("I am Exp: act-desc.Name else ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

—-- Pull the description from the fact.
A_Description_Line:= A_Fact(36..95);

—-- Add the description to the description part of the

-~ activity record. 0(1) time.

Environment_Types.Text_Buffer Package.Add_Item
(A_Description_Line,Activity_Record.Description,The_Iterator);

-~ Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Nuxt(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.
if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_Of Item
(Fact_Pointer);

else
- If this is the last fact of the last activity exit the
-- loop.
exit;
end if;
end lcop:

B-27

~- There were one or more lines in the description so now must
-- place them with the activity in the activity manager. 0(1).
Activity_Manager.Set_Activity_Description

(Activity_Pointer, Activity_Record.Description);

end if;

-— If the fact buffer is empty at this point there is an error
-- in the format. 0(1) time. I know this because Retrieve_Activity_
-— Facts will at least put a null entry for no children.

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exception: act-has-child Is_Done ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Get a fact.
A_Fact:= Environment_Types.Fact_Buffer_ Package.Value_0f_Item
(Fact_Pointer);

~-- The series of fact(s) should be the activity description.
—-- There is at least one act-desc fact and possible more.
if A_Fact(1..13) /= "act-has-child" then

Text_I10.Put_Line("I am Exp:act-has-child ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Columns 15 through 39 must be the same activity name.
if A_Fact(15..39) /= Activity_Record.Name then

Text_I0.Put_Line("I am Exp: act~has-child.Name "y,
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- If the child list is null then we are done with this attribute.
~— Need only to advance the pointer by one for the outer loop.

if A_Fact(41..44) = "null"” then
-- There is no child list for the activity, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager. 6(1) tame.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
else
-- There must be one or more children.
-- This loop will run z times where z is the number of children.
while A_Fact(1..13) = "act~has-child"” loop
-- I realize this check is repetitive on the first iteration.

B-28

-= Columns 15 through 39 must be the same activity name.
-- 0(1) time complexity.
i? A_Fact(15..39) /= Activity_Record.Name then

Text_I0.Put_Line("I am Exp: act-has-child whild "),
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Pull a child from the fact.
A_Child:= A_Fact(41..65);

== In order to add a child to a parent, the Activity Manager
~~ requires that the child already exist as am activity.
-~ Thus, must create the activity first if needed.

-- Check to see if activity already exists. 0(a) call.
Activity _Manager.Activity_Exists(A_Child,
Activity_Pointer, Found_Flag);
if Found_Flag = False then
-- Do 0(a * z) procedure call to create an activity.
Activity_Manager.Create_Activity
(A_Child, Activity_Pointer);
end if;

~-- Do another 0(a * z) procedure call to add this activity

-- to the parent’s child list.

Activity_Manager.Add_Activity_Child(Activity_Record.Name,
A_Child, Result_Flag);

-~ Check results.

if Result_Flag = False then

Text_I0.Put_Line("I am Exp: act-has-child flag ");
raise Activity_Hierarchy_ Error_During_Restore;
end if;

-- Must now call Activity Exists again in order to reset the

-- pointer for any future operations. 0(a) time.

Activity_Manager.Activity_Exists(Activity_Record.Name,
Activity_Pointer, Found_Flag);

-~ Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.
if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_item
(Fact_Pointer);

else
-- If this is the last fact of the last activity exit the
~= loop.
exit;
end if;

B-29

end loop;
end if;

it Environmeht_Types.Fact_Buffer_Package.Is_done(Fact_Pointer) then
Text_IO.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-ref-type - Is_done ");

raise Invalid_Fact_Sequence_For Activity;

end if;

--" Advance pointer to next fact in manager. 0(1).
-- Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-~ this will cause the fact get next act-ref fact ealier than
-—'expected!!!

-- Get a fact. 0(1) time.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

if A_Fact(1..12) /= “act-ref-type'" then
Text_I0.Put_Line(A_Fact);

Text_IO0.Put_Line("I am Exp:act-ref-type ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Columns 14 through 38 must be the same activity name.
if A_Fact(14..38) /= Activity_Record.Name then
Text_I0.Put_Line("I am Exp: act-ref-type.name ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

~- Columns 40 through 64 hold the activity Reference Type if it is
== not null.

if A_Fact(40..43) = "null" then

-~ Do nothing, there was no activity Reference Type.
null;
else

-- Get the Reference type

Activity_Record.Reference_Type:= A_Fact(40..64);
-~ Do 0(1) procedure call to update the activity in the activity
-- manager.
Activity_Manager.Set_Activity_Reference_Type
(Activity_Pointer, Activity_Record.Reference_Type);
end if;

B-30

e 2o o oo 2 o 3 o e e b o o o e o e e o ok e ok o 3 ok e o o o e ok ko o ok o o o 3 ok e ook ok ok e o ok ok ok ok ok ok ok ok
== kkokkkkkkkkkk Restore Activity Reference Facts *kkkkskikkkikkiokkk
e akaieRsiOR s R ROR R ok R o ok ok ok ol o koo o ok ok s ok Ak sk ok oo ok ks o o o ok o ok ok K o ok ok
-~ 13 Feb 91

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-~ If the fact buffer is empty at this point there is an error
== in the format.
it Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: act-ref Is_Done ");
raise Invalid_Fact_Sequence_For_Activity;
end if;
-~ Get a fact.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

~-- The series of fact(s) should be the activity Reference.
~- There is at least one act-ref fact and possible more.
if A_Fact(1..7) /= "act-ref" then
Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: act-ref ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

== Columns 9 through 33 must be the same activity name.
1t A_Fact(9..33) /= Activity_Record.Name then
Text_I0.Put_Line("I am Exp: act-ref.Name 1 ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-~ If the Reference is null then we are done with this attraibute.
-~ Need only to advance the pointer by one for the outer loop.

if A_Fact(35..38) = "null" then
-~ There is no reference for the activity, so just advance
-~ the fact pointer.
-- Advance pointer to next fact in manager. O0(1) time.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

else

~- There must be one or more lines in the reference.
—-- This loop will run x times where x is the number of lines in the

B-31

-- reference.
while A_Fact(1..7) = "act-ref'" loop

~- I realize this check is repetitive on the first iteration.

== Columns 9 through 33 must be the same activity name.

-- 0(1) time complexity.

it A_Fact(9..33) /= Activity_Record.Name then
Text_IO.Put_Line("I am Exp: act-ref.Name 2 ");
raise Invalid_Fact_Sequence_For_Activity;

end if;

-- Pull the reference from the fact.
A_Reference_Line:= A_Fact(35..34);

~~ Add the reference to the reference part of the
-~ activity record. 0(1) time.
Environment_Types.Text_Buffer_Package.Add_Item

(A_Reference_Line,Activity_Record.Reference,The_Iterator);

-~ Advance pointer to next fact in manager.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If it is not empty get the next fact. 0{1) time.
if not Environment_Types.Fact_Buffer_ Package.Is_Done
(Fact_Pointex) then

A_Fact:= Environment_Types.Fact_Buffer_ Package.Value_Of_Item

(Fact_Pointer);

else
-- If this is the last fact of the last activity exit the
-- loop.
- Text_I10.Put_Line("I am Exp: act-ref else '");
~-- raise Invalid_Fact_Sequence_For_Activity;
exit;
end if;
end loop;

-- There were one or more lines in the description so now must
-- place them with the activity in the activity manager. 0(1).

Activity_Manager.Set_Activity_Reference
(Activity_Pointer, Activity_Record.Reference);

end if;

if Environment_Types.Fact_Buffer_Package.Is_done(Fact_Pointer) then

Text_I0.Put_Line("I am Exp: act-version Is_done ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

B-32

-~ Advance pointer to ne%t fact in manager. 0(1).
——Environment_?ypes.Fact_Bufter_Package.Get_Next(Fact_Pointer);
-- Get a fact. 0(1) time.
A_Fact:= Environment Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

-- This fact should be the activity Version.

if A_Fact(1i..11) /= “act-version" then
Text_I0.Put_Line("I am Exp: act-version ");
raise Invalid_Fact_Sequence_For_Activity;
end if; .
-~ Columns 13 through 37 must be the same ‘activity name.
if A_Fact(13..37) /= Activity_Record.Name then

Text_IO.Put_Line(LI tm Exp: act-version.Name "),
raise Invalid_Fact_éequence_For_Activity;
end if;

-~ Columns 39 through 48 hold the activity version if it is
~- not null. ’
if A_Fact(39..42) = "null" then
-- Do nothing, there was no activity version.
null; :
else '
-— Get the version.
Activity_Record.Version:= A_Fact(39..48);
-- Do 0(1) procedure call to update the activity in the activity
-— manager.)
Activity_Manager.Sep_Activity_Version
(Activity_Pointer, Activity_Record.Version);
end if;

-- *** get Activity Version Changes Facts *** - - -—-

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-~ If the fact buffer is empty at this point there is an error
~= in the format.

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line("I am Exp: act-ver-chg Is_Done ");
raise Invalid_Fact_Sequence_For_Activity;

end if;

B-33

-~ Get a fact.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);

-- The series of fact(s) should be the activity Version Changes.
~- There is at least one act-ver-chg fact and possible more.
if A_Fact(1..11) /= “act-ver-chg" then
Text_I0.Put_Line("I am Exp: act-ver-chg ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-- Columns 13 through 37 must be the same activity version name.
if A_Fact(13..37) /= Activity_Record.Name then
Text_IO.Put_Line("I am Exp: act-ver-chg.Name ");
raise Invalid_Fact_Sequence_For_Activity;
end if;

-~ If the version change is null then we are done with this attribute.
-~ Need only to advance the pointer by one for the outer loop.

if A_Fact(39..42) = "null" then
—-- There is no version change for the activity, so just advance
-- the fact pointer.
-~ Advance pointer to next fact in manager. 0(1) time.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

else
—-- There must be one or more lines in the version changes.
-- This loop will run x times where x is the number of times in the
-=- version change.

while A_Fact(1..11) = “act-ver-chg" loop

-~ I realize this check is repetitive on the first iteration.

-~ Columns 13 through 37 must be the same activity name.

~-- 0(1) time complexity.

if A_Fact(13..37) /= Activity_Record.Name then
Text_I0.Put_Line("I am Exp: act-ver-chg.Name in loop ")
raise Invalid_Fact_Sequence_For_Activity;

end if;

-- Pull the description from the fact.
Version_Line:= A_Fact(39..98);

~— Add the version change to the Version Changes part of the
-- activity record. 0(1) time.

B-34

Environment_Types.Text_Buffer_Package.Add_Item
(Version_Line, Activity_Record.Version_Changes, The_Iterator);

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_ Package.Get Next(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.
if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value Of Item
(Fact_Pointer);

else
-~ If this is the last fact of the last activity exit the
-= loop.
--Text_ID.Put_Line("I am Exp: act-ver-chg else "),
-- raise Invalid_Fact_Sequence_For_Activity;

exit;

end if;

end loop;

~- There were one or more lines in the version changes so now must
-~ place them with the activity in the activity manager. 0(1).
Activity_Manager.Set_Activity_Version_Comments

(Activity_Pointer, Activity_Record.Version_Changes);

end if;

~—%k* get Activity Date Facts #%* —---- --

if Environment_Types.Fact_Buffer_Package.Is_done(Fact_Pointer) then
Text_IO0.Put_Line("I am Exp: act-data Is_done ");

raise Invalid_Fact_Sequence_For_Activity; -- raised

end if;

-- 2/18/.2340 Get_Next(Fact_Pointer)
-~ This will get author ealier
-- Advance pointer to next fact in manager. 0(1).
-- Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-- Get a fact. 0(1) time.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value _Of_Item
(Fact_Pointer);

~- This fact should be the activity date.

if A_Fact(1..8) /= "act-date" then

Text_X0.Put_Line(A_Fact);

Text_J0.Put_Line("I am Exp: act-date ");

raise Invalid_Fact_Sequence For_Activity;
end if;

-= Columns 10 through 34 must be the same activity name.

it A_Fact(10..34) /= Activity_Record.Name then
Text_I0.Put_Line("I am Exp: act-data.Name ");
raise Invalid_Fact_Sequence_For_Activity;

end if;

-= Columns 36 through 43 hold the activity version if it is
== not null.
it A_Fact(36..39) = "null" then
-~ Do nothing, there was no activity version.
null;
else
-~ Get the date.

Activity_Record.Date:= A_Fact(36..43);
-- Do 0(1) procedure call to update the activity in the activity
-~ manager.

Activity_Manager.Set_Activity_Date
(Activity_Pointer, Activity_Record.Date);
end if;

——~ *%* Get Activity Author Facts #*x** —-==

if Environment_Types.Fact_Butfer_Package.Is_done(Fact_Pointer) then
Text_I0.Put_Line("I am Exp: act-author for Is_done ");

raise Invalid_Fact_Sequence_For_Activity;

end if;

-~ Advance pointer to next fact in manager. 0(1).
Environme-t_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
~-- Cet a fact. 0(1) time.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

-- This fact should be the activity author.

if A_Fact(i..10) /= "act-author’ then
Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: act-author ")
raise Invalid_Fact_Sequence_For_Activity;

end if;

-~ Columns 12 through 36 must be the same activity name.

if A_Fact(12..36) /= Activity_Record.Name then
Text_I0.Put_Line("I am Exp: act-author.Name ");
raise Invalid_Fact_Sequence_For_Activity;

end if;

-~ Columns 38 through 62 hold the activity author if it is
== not null.
if A_Fact(38..41) = "null" then
-~ Do nothing, there was no activity author.
null;
else
-~ Get the author.
Activity_Record.Author:= A_Fact(38..62);
-- Do 0(1) procedure call to update the activity in the activity
~- manager.
Activity_Manager.Set_Activity_Author
(Activity_Pointer, Activity_Record.Author);
end if;

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- Note that the last if then construct has already advanced the fact

~-- pointer to the next fact. Thus, there is no need to advance the
-- pointer here.

end loop;
end Restore_Activity_Facts;

DATE: 2/19/91 -

VERSION: 1.0

NAME: ***% RETRIEVE DATA ELEMENT FACTS #*x
MODULE NUMBER: TBD

DESCRIPTION:

When the flag Type_Of_Facts_Flag is set to true,i1t means the
client procedure wants all the facts that are necessary for
the .esm file. If the flag is false, then the facts for
the expert system are returned. Facts of the same type have
the same format no matter where they are destined. In this
case, the data element name is but a single fact.
data element facts: (retrieved when creating a .esm file or
when performing check syntax)
1) a predefined attribute name (data-element-name)
2) the data element name (if the name 1s null, the word ‘null’ is
placed in the faield.

B-37

-~ ALGORITHM: All simple O(1) statements and 2 0(1) procedure calls, --
-- PASSED VARIABLES: Type_Facts_Flag, Fact_Manager --
-~ RETURNS: None -
-- GLOBAL VARIABLES USED: None -
-~ GLOBAL VARIABLES CHANGED: Nune -
-~ FILES READ: None -
=~ FILES WRITTEN: None -
-- HARDWARE INPUT: None -
-- HARDWARE OUTPUT: None -
~- MODULES CALLED: None -
~- CALLING MODULES: TBD -
~~- ORDER-OF: 0(1) -
-- AUTHOR(S): Min-fuh Shyong -
-- HISTORY: None (Initial Implementation) -

procedure Retrieve_Data_Element_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager ¢ in out
Environment_Types.Fact_Buffer_Package.Manager _Type) is

-~ Local Declarations --

Fact_Pointer- Environment_Types.Fact_Buffer_Package.Iterator_ Type;
A_Fact: Environment_Types.Fact_String_Type;

Blank_Fact: Environment_Types.Fact_String _Type:= (others => ’ ’);

-- Data element declarations —-

Data_Element_Record : Data_Element_Class.Data_Element_Record_Type;
Data_Element_Pointer : Data_Element_Manager.Data_Element_Pointer_Type;

~— k*x* varribles for Values(multi-field) s*x** —— -

Data_Ele_Values_Iteratos:
Environment_Types.Data_Buffer_Package.Ilterator_Type;
Data_Ele_Values_Line: Environment_Types.DD_Field_Type;

~- #%%k* variables for description(multi-field) *** ---

The_Iterator: Environment_types.Text_Buffer_Package.Iterator_Type;
A_Description_Line: Environment_Types.DD_Text_Type;

—— *xx* variables for Reference(multi-field) ##k-—e——cocecccmcmmmaea—

Reference_Iterator :
Environment_Types.Text_Buffer_Package.Iterator_Type;

B-38

A_Reference_Line : Environment_Types.DD_Text_Type;
-~ *#*xx yariables for changes(multifield) *** ——

Version_Iterator : Environment_Types.Text_Buffer_Package.Iterator_Type;
Version_Line : Environment_Types.DD_Text_Type;

- begin
begin

-- Clear the passed in fact_manager. 0(1) time.
Environment_lypes.Fact_Buffer_Package.Clear(Fact_Manager);

-- Set pointer to beginning of manager. 0(1) time.
Data_Element_Manager.Reset_Data_Element_Iterator;

-- Engage loop to extract the facts associated with an data element. The
-~ facts oxtracted will have the format discussed above. If there are

-- no data element, this loop won’t execute and an empty buffer is the

-= result.

-— This loop runs a times where a is the number of data elements. At this
-- time there is only one inner loop of 0(x) time. Thus, the time

-~ complexity is O(a * x).

while not Data_Element_Manager.Data_Element_Iterator_Done loop
-~ outer loop --
-- Get a record. O(1) time.
Data_Element_Record:= Data_Element_Manager.
Value_Of_Data_Element_At_Iterator;

~-- Regardless of the Type_Facts_Flag setting, the data element name is
-~ always added to the fact buffer.

-- Place the data element name into a fact string at specific positionms.
-- Initialize the fact string to all blanks first. ‘
-- All string assignments are modeled as 0(1).

-- **xxCreate Data Element Name Fact##*¥ —wwo—mm e e o |
A_Fact:= Blank_Fact;

A_Fact(1..17) := "data-element-name";

A_Fact(18) IR

if Data_Element_Record.Name /= Data_Element_Class.Null_Data_Element_Name then
A_Fact(19..43) := Data_Element_Record.Name;

else
A_Fact(19..22) := "null";

end if;
~~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);
~--(data-element-name Name)
-~ (data~element-name null)

~= **xx*Create Data Element Data_Type Factkx*
A_Fact:= Blank_Fact;

A_Fact(1..17) := "data-element-type";
A_Fact(18) 1=) 2

A_Fact(19..43) := Data_Element_Record.Name;
A_Fact(44) 1=)y

~- This if then construct determines what goes into the last field.

~~ If the data element data_type is not null then create a fact with the

~= data_type in it. Flag setting doesn’t matter here.
if Data_Element_Record.Data_Type /=

Data_Element_Class.Null_Data_Element_Data_Type then

~- All statements modeled as 0(1) time.
A_Fact(45..69) := Data_Element_Record.Data_Type;

else
-~ The activity number is null, so create a null fact for
~~ either the .esm file or the expert system. Again, the flag
-- setting does not matter. A1l 0(1) time.
A_Fact(45..48) := "null";
end if;

-- Store thic ‘fact in the fact buffer. 0(1) time.
Environment_T,pes.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- (data-element-~type Name Data-Type)

-~ (data-element-type Name null)

***xxCreate Data Element minimum Fact*¥k* ———emeeoccm e
A_Fact:= Blank_Fact;

A_Fact(1..20) := "data-element-minimum";
A_Fact(21) E R

A.Fact(22..46) := Data_Element_Record.Name;
A_Fac (4T) =00y

if Data_Element_Record.Minimum /=

Data_Element_Class.Null_Data_Element_Value then
A_Fact(48..62) := Data_Element_Record.Minimum;

else
A_Fact(48..51) := "null";
end if;

B-40

~-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);
~--(data-element-minimum Name Minimum)
-~ (data-element-minimum Name null)
-- ***xCreate Data Element Maximum Fact**¥* ——-—memm e e
A_Fact:= Blank_Fact;

A_Fact(1..20) := "data-element-maximum’;
A_Fact(21) 1=,
A_Fact(22..46) := Data_Element_Record.Name;

A_Fact(47) =00,

—-= This if then construct determines what goes into the last field.
~= If the data elem=at maximum is not null then create a fact with the
-—- maximum in it. Flag setting doesn’t matter here.

if Data_Element_Record.Maximum /=
Data_Element_Class.Null_Data_Element_Value then
-- All statements modeled as 0(1) time.
A_Fact(48..62) := Data_Element_Record.Maximum;

else
—— The data element maximum is null, so create a null fact for
-~ either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.
A_Fact(48..51) := "null";

end if;

-~ Store this fact an the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

-- (data-element-maximum Name Maximum)
-- (data-element-maximum Name null)

~-- *x*xCreate Data Element data range Fact*x** -—- -

A_Fact:= Blank_Fact;

A_Fact(1..23) := "data-element-data-range";
A_Fact(24) =0y
A_Fact(25..49) := Data_Element_Record.Name;

A_Fact(50) =2 0

-~ This if then construct determines what goes into the last field.
-- If the data element data range is not null then create a fact with the
-- range in it. Flag setting doesn’t matter here.

if Data_Element_Record.Data_Range /= Data_Element_Class.Null_Data_Element_Value then
-- A1l statements modeled as 0(1) time.

B-41

A_Fact(51..65) := Data_Element_Record.Data_Range;

else
-- The data element data range is null, so create a null fact for
-~ either the .esm file or the expert system. Again, the flag
-~ setting does not matter. All 0(1) time.
A_Fact(51..54) := "null";
end if;

-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- (data-element-data-range Name Data_Range)
-- (data-element-data-range Name null)

-~ *¥**Create one or more data element values Factsk¥*kk———wmr—mocmmemcnno——

-~ If the data element values is null then only a single fact is

-- created regardless of the flag setting.

if Environment_Types.Data_Buffer_Package.Is_Empty
(Data_Element_Record.Values) then

-- Create a null fact.
A_Fact:= Blank_Fact;

A_Fact(1..19) := "data-element-values";
A_Fact(20) =00
A_Fact(21..45) := Data_Element_Record.Name;

A_Fact(46) =0y
A_Fact(47..50):= "null";

-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-~ A false flag setting means the fact is for the expert system.
~-- For o value, we don’t want the whole value in the
-- working memory, so just store a "not-null" string!

elsif Type_Facts_Flag = False then

-~ Create a fact that shows the descraption is not null.

B-42

A_Fact:= Blank_Fact;

A_Fact(1..19) := "data-element-values";
A_Fact(20) =0y
A_Fact(21..45) := Data_Element_Record.Name;

A_Fact(46) =0 0
A_Fact(47..54):= "not-null";

-~ Store this fact in the fact buffer. 0(1) time.

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~~ At this point we know the flag is true which means the fact
-- is to go to the .esm file. However, there may be multiple lines
== in the values thus a loop is required.

-~ Set iterator to first line of description.
Environment_Types.Data_Buffer_Package.Initialize_Iterator
(Data_Ele_Values_Iterator, Data_Element_Record.Values);

—-- Engage loop to get each line of the values and

-~ make it a fact. This loop is 0(x) time where x is the

~- number of lines in the description.

while not Environment_Types.Data_Buffer_Package.Is_Done
(Data_Ele_Values_Iterator) loop

——- Retrieve a single line of text. O0(1) time.
Data_Ele_Values_Line:= Environment_Types.Data_Buffer_Package.
Value_Df_Item(Data_Ele_Values_Iterator);

-- Create a fact representing a single .ine of the description.
A_Fact:= Blank_Fact;

A_Fact(1..19) := "data-element-values";
A_Fact (20) =007
A_Fact(21..45) := Data_Element_Record.Name;

A_Fact(46) =0y
A_Fact(47..71):= Data_Ele_Values_Line;

~- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- Advance pointer by one to next line.

Environment_Types.Data_Buffer_Package.
Get_Next(Data_Ele_Values_Iterator);
end loop;
end if;
-- (data-element-values Name null)
-~ (data-element-values Name Linel) ...

13-43

-- *x**xCreate one or more Data Element Description Factskkkk———moeemcmmmumannnr.

-- If the data element description is null then only a single fact is

~=- created regardless of the flag setting.

if Environment_Types.Text_Buffer_Package.ls_Empty
(Data_Element_Record.Description) then

—— Create a null fact.
A_Fact:= Blank_Fact;

A_Fact(1..9) := "data-desc";

A_Fact(10) = 0y

A_Fact(11..35) := Data_Element_Record.Name;
A_Fact(36) 1= 2

A_Fact(37..40):

"null";

-~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~-~ A false flag setting means the fact is for the expert system.
-~ For a description, we don’t want the whole description in the
-- w.rking memory, so just store a "not-null" string!

elsif Type_Facts_Flag = False then

-- Create a fact that shows the description 1s not null.
A_Fact:= Blank_Fact;

A_Fact(1..9) := "data-desc";

A_Fact(10) 1= 0

A_Fact(11..35) := Data_Element_Record.Name;
A_Fact(36) N

A_Fact(37..44):= "not-null'";

~-~ Store this fact in the fact buffer. O0(1) time.
Environment_Types.Fact_Buf.er_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~- At this point we know the flag is true which means the fact
-— is to go to the .esm file. However, there may be multiple lines
-~ in the description thus a loop is required.

-~ Set iterator to first line of description.
Environment_Types.Text_Buffer_Package.Initialize_Iterator
(The_Iterator, Data_Element_Record.Description);

-~ Engage loop to get each line of the description and

-~ make it a fact. This loop is 0(x) time where x is the
-- number of lines in the description.

while not Environment_Types.Text_Buffer_Package.Is_Done

B-44

(The_Iterator) loop

-~ Retrieve a single line of text. O0(1) time.
A_Description_Line:= Environment_Types.Text_Buffer_Package.
Value_Of_Item(The_Iterator);

-- Create a fact representing a single line of the description.
A_Fact:= Blank_Fact;

A_Fact(1..9) := "data-desc";

A_Fact(10) =2 0

A_Fact(11..35) := Data_Element_Record.Name;
A_Fact(36) 1= 0y

A_Fact(37..96):= A_Description_Line;

-~ Store this fact in the fact buffer. 0(1) time.

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-~ Advance pointer by one to next line.

Environment_Types.Text Buffer_Package.Get_Next(The_Iterator);
end loop;
end if;

-~ (data-desc Name null)

-~ (data-desc Name not-null)
-- (data-desc Name Description_Linel)

-- ***¥*Create one or more data reference Facts***x* -

-~ If the data reference is null then only a single fact is

~- created regardless of the flag setting.

if Environment_Types.Text_Buffer_Package.Is_Empty
(Data_Element_Record.Reference) then

—- Create a null fact.
i._Fact:= Blank_Fact;

A_Fact(1..8) := "data-ref";

A_Fact(9) R

A_Fact(10..34) := Data_Element_Record.Name;
A_Fact(35) = 0

A_Fact(36..39):= "null";

-- Store this fact in the fact buffer. O0(1) time.
Environment _Types.Fact_Buffer_Package.Add_item
(A_Fact, Fact_Manager, Fact_Poanter);

-- A false flag setting means the fact 1s for the expert system.

~- For a reference, we don’t want the whole reference in the
-- working memory, so just store a "not-null" string!

B-45

elsif Type_Facts_Flag = False then

Create a fact that shows the reference is not null.

A_Fact:= Blank_Fact;

A_Fact(1..8) := "data-ref";

A_Fact(9) = 0y

A_Fact(10..34) := Data_Element_Record.Name;
A_Fact(35) 1= 0 2,

A_Fact(36..43):= "not-null";

Store this fact in the fact buffer. 0(1) time.

Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

At this point we know the flag is true which means the fact
is to go to the .esm file. However, there may be multiple lines
in the reference thus a loop 1s required.

Set iterator to first line of description.

Environment_Types.Text_Buffer_Package.Initialize_Iterator

(Reference_Iterator, Data_Element_Record.Reference);

Engage loop to get each line of the reference and
make it a fact. This loop is 0(x) time where x is the
number of lines in the reference.

while not Environment_Types.Text_Buffer_Package.Is_Done

(Reference_Iterator) loop

-~ Retrieve a single line of text. O0(1) time.
A_Reference_Line:= Environment_Types.Text_Buffer_Package.
Value_0f_Item(Reference_Iterator);

—-- Create a fact representing a single line of the description.
A_Fact:= Blank_Fact;

A_Fact(1..8) := "data-ref';

A_Fact(9) 1= 0

A_Fact(10..34) := Data_Element_Record.Name;
A_Fact(35) =2 0

A_Fact(36..95):= A_Reference_Line;

~~ Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~- Advance pointer by one to next line.
Environment_Types.Text_Buffer_Package.Get_Next(Reference_Iterator);

end loop;
end if;

~-- (data-ref Name not~null)

B-46

-~ (data-ref Name null)
-~ (data-ref Name Reference_Linel)

=~ ®kkkxkkks Create data reference type facts 120300 siokskskdoksokskokodkdorkdkksokkok

A_Fact := Blank_Fact;

A_Fact(1..13) := "data-ref-type";
A_Fact(14) s 0

A_Fact(15..39) := Data_Element_Record.Name;
A_Fact(40) 1=) 0y

1f Data_Element_Record.Reference_Type /=
Environment _Types.Null_Reference_Type then

A_Fact(41..65) := Data_Element_Record.Reference_Type; |

else

A_Fact(41..44) :
end if;

"null";

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-~ (data-ref-type Name Reference_Type) or
-- (data-ref-type Name null)

—-- kxkkkkkkk Create data element Version facts *kkkkkokakok sk kkkk ok kkkkkkk

A_Fact = Blank_Fact;

A_Fact(1..12) := "data-ele-ver":
A_Fact(13) =

A_Fact(14..38) := Data_Element_Record.Name;
A_Fact(39) IR

if Data_Element_Record.Version /=
Data_Element_Class.Null_Data_Element_Version_number then
A_Fact(40..49) := Data_Element_Record.Version;

else
A_Fact(40..43) := "null";
end if;

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

~- (data-ele-ver Name Data-Element-Version) or
-- (data-ele-ver Name null)

—-- *** Create one or more data element Version-Changes facts -------------oc—uu—a—-

-- if the data element version changes is null then only a single
-- fact is created regardless of the flag setting

if Environment_Types.Text_Buffer_package.ls_Empty
(Data_Element_Record.Version_Changes) then
== true it is empty

A_Fact := Blank_Fact;

A_Fact(1..12) := "data-e-v-chg";
A_Fact(13) =1 0

A_Fact(14..38) := Data_Element_Record.Name;

A_Fact(39) L
A_Fact(40..43) "null";

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

elsif Type_Facts _Flag = false then

A_Fact := Blank_Fact;

A_Fact(1..12) := "data-e-v-chg";

A_Fact(13) := * 7;

A_Fact(14..38) := Data_Element_Record.Name;
A_Fact(39) := ' 7,

A_Fact(40..47) := "not-null";
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

else -- version not empty show the version changes to .esm --
Environment_Types.Text_Buffer_Package.Initialize_Iterator
(Version_Iterator, Data_Element_Record.Version_Changes);

~-- Engage a loop to get each version of changes and make it a fact

while not Environment_Types.Text_Buffer_Package.Is_Done
(Version_Iterator) loop

Version_Line :=
Environment_Types.Text_Buffer_Package.Value Of_Item(Version_Iterator);

A_Fact ;= Blank_Fact;

A_Fact(1..12) := "data-e-v-chg";

A_Fact(13) = * *;

A_Fact(14..38) := Data_Element_Record.Name;
A_Fact(39) := * ’;

B-48

En
(A

A_Fact(40..99) := Version_Line; -- (data-e-v-chg Name null)
-- (data-e-v-chg Name not-null)
-- (data-e-v-chg Name Version-changes)
vironment_Types.Fact_Buffer_Package.Add_Item
_Fact, Fact_Manager, Fact_Pointer);

Environment_Types.Text_Buffer_Package.Get_Next(Version_Iterator);

end loop;
end if;
-- *x¥**Create data element Date Fact *¥kk——emm—meemcmcemm e e e e
A_Fact:= Blank_Fact;
A_Fact(1..13) := "data—ele-date";
A_Fact(14) =0 0
A_Fact(15..39) := Data_Element_Record.Name;
A_Fact(40) = 0,

17 Data_Element_Record.Date /= Environment_Types.Null_Date then
A_Fact(41..48) := Data_Element_Record.Date;

else
A_Fact(41..44) := "null";

end if;

—- Store this date fact in the fact buffer. O0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

-- (date-ele-date Name mm/dd/yy)
-~ (Cata-ele-date Name null)

-- ****Create data element Author Factx*x*x*
A_Fact:= Blank_Fact;

A_Fact(1..15) := "data-ele-author";
A_Fact(16) =0 0
A_Fact(17..41) := Data_Element_Record.Name;

A_Fact(42) =0

-- This 1f then construct determines what goes into the last field.
-~ If the data element author is not null then create a fact with the
~- data element author in it. Flag setting doesn’t matter here.

if Data_Element_Record.Author /= Environment_Types.Null_Author_Name then
~- All statements modeled as 0(1) time.
A_Fact(43..67) := Data_Element_Record.Author;

else
-~ The data element author is null, so create a null fact for

B-49

~-- either the .esm file or the expert system. Again, the flag
-~ setting does not matter. All 0(1) time.
A_Fact(43..46) := "null";

end if;

~-- Store this fact in the fact buffer. 0(1) time.
Environment_Types.Fact_Buffer_Package.Add_Item

(A_Fact, Fact_Manager, Fact_Pointer);

~~ (data~ele-~author Name Author)
-~ (data-ele-author Name null)

Data_Element_Manager.Advance_Iterator_To_Next_Data_Element;

end loop;
end Retrieve_Data_Element_Facts;

-~ DATE: 2/21/91 --
-- VERSION: 1.0 -
-~ NAME: **x*PROCEDURE RESTORE DATA ELEMENT FACTS#**% -
~~ MODULE NUMBER: TBD -
-~ DESCRIPTION: This procedure accepts a buffer of data element facts --
-~ and restores that information into the data element manager. Of --
~-- special note is that the procedure assumes the facts are in the -
~- same order in which they were stored. -
-— ALGORITHM: A single while loop controls the execution with an --
-- embedded call to an 0(i) procedure. --
-~ PASSED VARIABLES: The_Fact_Buffer (contains the facts) -
-~ RETURNS: None --
~— GLOBAL VARIABLES USED: None -
-— GLOBAL VARIABLES CHANGED: None ==
-- FILES READ: None --
-~ FILES WRITTEN: None -
-~ HARDWARE INPUT: None -
-~ HARDWARE OUTPUT: None ==
-~ MODULES CALLED: None -
—-— CALLING MODULES: Essential_I0.Restore_Project -
-~ ORDER-OF: order of is 0(a * max (x, z * (a * 2))) where a 1s the --
~— number of data elements, x is the number of lines in a description --
~~ and z is the number of reference that a data element has, Note --
-~ that this order of may change when more of the data element ==
-~ manager facts are restored. --
-- Note that all string slice operations are modeled as 0(1) time. --
-- AUTHOR(S): Min-fuh Shyong --
-~ HISTORY: none (Initial Implementation) -

procedure Restore_Data_Element_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager Type) is

-- Local Declarations --

Fact_Pointer: Environment_Types.Fact_Buffer_Package.Ilterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

First_Char: natural:= 0;

Cchar_Position: natural:= 0;

Temp.Pos: natural:= O;

More_Descriptions_Flag: boolean;

-~ Data Element Related Declarations --

Data_Element_Record: Data_Element_Class.Data_Element_Record_Type;
Data_Element _Pointer: Data_Element_Manager.Data_Element_Pointer_Type;
Null_Data_Element_Record: Data_Element_Class.Data_Element_Record_Type;

The_Iterator: Environment_Types.Text_Buffer_Package.Iterator_Type;

Data_E8le_Values_Line : Environment_Types.DD_Field_Type;

A_Description_Line : Environment_Types.DD_Text_Type;
A_Reference_Line : Environment_Types.DD_Text_Type;
Version_Line ¢ Environment_Types.DD_Text_Type;

Found_Flag: boolean:= False;
Result_Flag: boolean;

-~ Exception -~
-~ This exception is declared here because the Essential IO package does
-~ not check to see the facts are in any specific order.

Invalid_Fact_Sequence_For_Data_Element: exception;
Data_Element_ Hierarchy Error_During_Restore: exception;

- begin Restore Data Element -- -

begin

== Check for empty buffer of facts. If empty, do nothing.

it Environment_Types.Fact_Buffer_Package.Is_Empty(The_Fact_Buffer) then
return;

end if;

-~ Initialize iterator to first fact.
Environment_Types.Fact_Buffer_Package.Initialize Iterator
(Fact_Pointer, The_Fact_Buffer);

-~ Engage loop to extract the data element facts from a buffer

~- one at a time. This loop will execute a times -- once for

~~ each data element. Note that there are many facts associated with
~-- a single data element. This loop runs a times. The loop has one
-~ inner loop of order x and one procedure call of (a * z). Thus,

-- order of is O(a * max (x, z*(a * z)))

While not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop
-- Get a record.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);
-~ Since we put the information in the string, we know the
-=- exact columns where information should be.
-- All string assignments are modeled as 0(1);
-- Insure the fields are all blanks.

Data_Element_Record:= Null_Data_Element_Record;

-- ***¥ Restore Data Element Name **x

-- The first fact should be the namae.
if A_Fact(1..17) /= "data-element-name" then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am {.p: data-element-name. ");
raise Invalid_Fact_Sequence_For Data_Element;
end if;

-~ The Data Element name must be in columns 19 through 43.
Data_Element_Record.Name:= A_Fact(19..43);

-- Check to see if Data Element already exists. 0(a) call.
Data_Element_Hanager.Data_Element_Exists(Data_Element_Record.Name,
Data_Element_Pointer, Found_Flag);

if Found_Flag = False then
-- Do 0(a * z) procedure call to create a data element.
Data_Element_Manager.Create_Data _Element
(Data_Element_Record.Name, Data_Element_Pointer);
end 1f;

-~ Advance pointer to next fact in manager. 0(1).
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-- Get a fact. O0(1) time.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer):

—-=- *** Restore Data Element Data Type *¥*k ——moocmomuommmme e e

~- This fact should be the Data Element Data Type.

if A_Fact(1..17) /= "data-element-type" then
Text_I0.Put_Line(A_Fact);)

Text_IO0.Put_Line("I am Exp: data-element-type. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Columns 19 through 43 must be the same data element name.
if A_Fact(19..43) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-type.Name. ");
raise Invalid_Fact_Sequence_ror_Data_Element;
end if;

-— Columns 45 through 69 hold the data element data type if it is
-= not null.
1f A_Fact(45..48) = "null" then
-- Do nothing, there was no data element data type.
null;
else
-~ Get the number.
Data_Element_Record.Data_Type:= A_Fact(45..69);
-~ Do 0(1) procedure call to update the data type in the data element
-- manager.

Data_Element_Manager.Set_Data_Element_Data_Type
(Data_Element_Pointer, Data_Element_Record.Data_Type);
end if;

-- Advance pointer to next fact in manager.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If the fact buffer is empty at this point there 1s an error

~- in the format.

1f Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: data-element-type.Is_Done ");

raise Invalid_Fact_Sequence_For_Data_Element;
end if;

~-- Get a fact.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_Of_Item
(Fact_Pointer);

-- **x Restore Data Element Minimum *¥# —=-me-—emmcmeoce e cnc e n e

-- This fact should be the Data Element Minimum.

if A_Fact(1..20) /= "data-element-minimum” then
Text_I0.Put_Line{A_Fact);

Text_IO0.Put_Line("I am Exp: data-element-minimum. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

B-53

-- Columns 22 through 46 must be the same data element name.
if A_Fact(22..46) /= Data_Element_Record.Name ther
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-minimum.Name. "),
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-~ Columns 48 through €2 hold the data element minimum if it is
-- not null.
if A_Fact(48..51) = "null" then
-- Do nothing, there was no data element minimum.
null;
else
-- Get the minimum.
Data_Element_Record.Minimum:= A_Fact(48..62);
-- Do 0(1) procedure call to update the minimum in the data element
-- manager.

Data_Element_Manager.Set_Data_Element_Minimum
(Data_Element_Pointer, Data_Element_Record.Minimum);
end if;

—-- Advance pointer to next fact in manager.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-~ If the fact buffer is empty at this point there is an error

—-- in the format.

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-minimum.Is_Done. "y,
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-- Get a fact.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value _Of Item
(Fact_Pointer);

-- *x* Restore Data Element Maximum *** —~———--———emecmmm e e
-- This fact should be the Data Element Maximum.

if A_Fact(1..20) /= "data-element-mavimum" then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-maximum ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Columns 22 through 46 must be the same data element name.
if A_Fact(22..46) /= Data_Element_Record.Name then

Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-element-maximum.Name.
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

Columns 48 through 62 hold the data element maximum if it is
not null.

if A_Fact(48..51) = "null" then
-- Do nothing, there was no data element maximum.
null;

else

-~ Get the maximum.
Data_Element_Record.Maximum:= A_Fact(48..62);

");

-- Do 0(1) procedure call to update the maximum in the data element

—— manager.

Data_Element_Manager.Set_Data_Element_Maximum
(Data_Element_Pointer, Data_Element_Record.Maximum);

end if;

Advance pointer to next fact in manager.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

if

If the fact buffer is empty at this point there is an error

in the format.
Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-maximum.Is_done. ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-- Get a fact.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item

(Fact_Pointer);

-~ **% Restore Data Element Data Range **x* --

-- This fact should be the Data Element Data range.

if A_Fact(1..23) /= "data-element-data-range" then

Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data~element-data-range. ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

=~ Columns 25 through 49 must be the same data element name.
if A_Fact(25..49) /= Data_Element_Record.Name then

Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: data-element-data-range.Name
raise Invalid_Fact_Sequence_For_Data_Element:

end if;

")

if

-- Columns 51 through 65 hold the data element data range if it is
-- not null.
if A_Fact(51..54) = "null"” then
-- Do nothing, there was no data element data range.
null;
else
-~ Get the range.

Data_Element_Record.Data_Range:= A_Fact(51.,.65);
-- Do 0(1) procedure call to update the data range in the data element
-- manager.

Data_Element_Manager.Set_Data_Element_Data_Range
(Data_Element_Pointer, Data_Element_Record.Data_Range);
end if;

-- Advance pointer to next fact in manager. ---

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-— If the fact buffer is empty at this point there is an error

-- in the format.

if Environment _Types.Fact_Buffer_Package.Ils_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-data-range.Is_Done. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;
-- Get a fact.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

~-- **% Restore Data Element Values facts #** -—————--—mem——mm—memmem oo

A_Fact(1..19) /= "data-element-values" then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-values. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

== Columns 21 through 45 must be the same data element name.
if A_Fact(21..45) /= Data_Element_Record.Name then
Text_IO0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-element-values.Name. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- If the values list is null then we are done with this attribute.
~= Need only to advance the pointer by cne for the outer locp.

if A_Fact(47..50) = "null" then
-~ There is no values list for the data element, so just advance
-~ the fact pointer.
-- Advance pointer to next fact in manager. O0(1) time.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
else
-- There must be one or more values.
-~ This loop will run z times where z is the number of values.

while A_Fact(1..19) = "data-element-values" loop

== Columns 21 through 45 must be the same data element name.

-- 0(1) time complexity.

if A_Fact(21..45) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data~element-values.Name. in while ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Pull a Value from the fact.
Data_Ele_Values_Line:= A_Fact(47..71);

-~ In order to add a value, the Data Element Manager
~-=- requires that the value already exist as a data element.
-- Thus, must create the data element first if needed.

-~ Check to see if data element already exists. 0(a) call.

Data_Element_Manager .Data_Element_Exists(Data_Ele_Values_Line,
Data_Element_Pointer, Found_Flag);

if Found_Flag = False then
-- Do O(a * z) procedure call to create a data element.
Data_Element_Manager.Create_Data_Element

(Data_Ele_Values. Line, Data_Element_Pointer);
end if;

-- Do another O(a * z) procedure call to add this data element

Data_Element_Manager.Set_Data_Element_Values
(Data_Element_Pointer, Data_Element_Record.Values);

—-- Must now call Data Element Exists again in oxder to reset the
-- poanter for any future operations. 0(a) time.
Data_Element_Manager.Data_Element_Exists(Data_Element_Record.Name,
Data_Element_Pointer, Found_Flag);

-- Aavance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-~ If it is not empty get the next fact. 0(1) time.
if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_ 0f_Item
(Fact_Pointer);

else
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-element-values in else ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;
end loop;
end if;

-~ *%* Restore Data Element Description Facts *#* —————-———o—oommwm—o

if Environment_Types.Fact_Buffer_ Package.Is_Done(Fact_Pointer) then
Text_I10.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exception: data-element Is_Done ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);

-~ The series of fact(s) should be the data element description.
~-- There is at least one data-desc fact and possible more.
if A_Fact(1..9) /= "data-desc" then

Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-desc. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-~ Columns 11 through 35 must be the same data element name.
if A_Fact(11..35) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-desc.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-~ If the description is null ther we are dene with this attribute.
-- Need only to advance the pointer by one for the outer loop.
if A_Fact(37..40) = "null" then
-~ There is no description for the data element, so just advance
~- the fact pointer.
-~ Advance pointer to next fact in manager. 0(1) time.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

else
~- There must be one or more lines in the description.
~-~ This loop will run x times where x is the number of lines in the
-- description.
vhile A_Fact(1..9) = "data-desc" loop
-- I realize this check is repetitive on the first iteration.
~- Columns 11 through 35 must be the same data element name.
-~ 0(1) time complexity.
it A_Fact(11..35) /= Data_Element_Record.Name then
Text_ID.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-desc.Name in while ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-~ Pull the description from the fact.
A_Description_Line:= A_Fact(37..96);

—- Add the description to the description part of the
-~ data element record. 0(1) time.

Environment_Types.Text_Buffer_Package.Add_Item

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.

if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item

(Fact_Pointer);

else
-- If this is the last fact of the last data element exit the
-- loop.
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-desc in else ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

end loop;

~- There were one or more lines in the description so now must

Data_Element_Manager.Set_Data_Element_Description
(Data_Element_Pointer, Data_Element_Record.Description);

end if;

~-- If the fact buffer is empty at this point there is an error
-- in the format. 0(1) time. I know this because
~- Retrieve_Data_Element_Facts will at least put a null entry

(A_Description_Line, Data_Element_Record.Description, The_Iteratoxr);

-~ place them with the data element in the data element manager. 0(1).

if Environment_Types.Fact_Buffer_ Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-desc.Is_Done ");

raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-- Get a fact.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);

-- The series of fact(s) should be the data element description.
-- There is at least one data-desc fact and possible more.

—— **x Restore Data Element Refevrence Facts **¥% ~———mcem——ommoe—c—woa

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-ref.Is_Done. ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

Get a fact.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_ 0f_Item
(Fact_Pointer);

-- The series of fact(s) should be the Data Element Reference.
-- There is at least one data-ref fact and possible more.
if A_Fact(1..8) /= "data-ref' then

Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exp: data-ref. “);
raise Invalid_Fact_Sequence_For_Data_Element;
end 1if;

~-~ Columns 10 through 34 must be the same data element name.
if A_Fact(10..34) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: data-ref.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- If the Reference 1s null then we are done with this attribute,
~- Need only to advance the pointer by one for the outer loop.

if A_Fact(36..39) = "null" then
-~ There is no reference for the data element, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager. O(1) time.

B-60

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

else
-~ There must be one or more lines in the reference.
~- This loop will run x times where x is the number of lines in the
~-- reference.
while A_Fact(1..8) = "data-ref" loop
-~ I realize this check is repetitive on the first iteration.
~=~ Columns 10 through 34 must be the same data element name.
~-- 0(1) time complexity.
if A_Fact(10..34) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-ref.Name in while ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

—— Pull the reference from the fact.
A_Reference_Line:= A_Fact(36..95);

-- Add the reference to the reference part of the
~-- data element record. 0(1) time.
Environment_Types.Text_Buffer_Package.Add_Item

(A_Reference_Line, Data_Element_Record.Reference, The_Iterator);

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.

if not Environment_Types.Fact_Buffer_Package.Is_Done
(Fact_Pointer) then

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

else
-~ If this is the last fact of the last data element exit the
~= loop.
Text_I0.Put_Line(A_Fact);
Text_IO.Put_Line("I am Exp: data-ref. in else ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

end loop;

-- There were one or more lines in the reference so now must

-~ place them with the data element in the data element manager. 0(1).

Data_Element_Manager.Set_Data_Element_Reference
(Data_Element_Pointer, Data_Element_Record.Reference);

end if;

B-61

it

—-- *%* Restore Data Element Reference Type Facts *#* ———wc—mmmo—momn——

Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_IO.Put_Line("I am Exception: data-element reference type Is_Done ")
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Advance pointer to next fact in manager. 0(1).

~~Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- Get a fact. 0(1) time.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item
(Fact_Pointer);

-— This fact should be the Data Element Reference Type.
if A_Fact(1..13) /= "data-ref-type" then
Text_I0.Put_Line(A_Fact);

Text_IO.Put_Line("I am Exp: data-ref-type. ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

=~ Columns 15 through 39 must be the same data element name.

if A_Fact(15..39) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-ref-type.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-- Columns 41 through 65 hold the Data Element Reference Type if it is
-~ not null.

if A_Fact(41..44) = "null" then
-- Do nothing, there was no Data Element Reference Type.
null;

else
-- Get the Reference type

Data_Element_Record.Reference_Type:= A_Fact(41..65);
~~ Do 0(1) procedure call to update the data element in the
-- data element manager.

Data_Element_Manager.Set_Data_Element_Reference_Type
(Data_Element_Pointer, Data_Element_Record.Reference_Type);
end if;

B-62

-~ *xx get Data Element Version Facts **x

it Environment_Types.Fact_Buffer_ Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exception: data- ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-~ Advance pointer to next fact in manager. 0(1).
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-~ Get a fact. O0(1) time.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

-- This fact should be the Data Element Version.

if A_Fact(1..12) /= "data-ele-ver" then
Text_I0.Put_Line(A_Fact);
Text_IO0.Put_Line("I am Exp: data-ele-ver ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Columns 14 through 38 must be the same Data element name.
if A_Fact(14..38) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-ele-ver.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;
end 1f;

-~ Columns 40 through 49 hold the data element version if it 1is
-= not null.

if A_Fact(40..43) = "null" then
-- Do nothing, there was no data element version.
null;
else
-~ Get the version.
Data_Element_Record.version:= A_Fact(40..49);
-- Do 0(1) procedure call to update the data element in the
~~ data element manager.
Data_Element_Manager.Set_Data_Element_Version
(Data_Element_Pointer, Data_Element_Record.Version);
end if;

-- *%* get Data Element Version Changes Facts #¥* —~—-mecme—wmoceece—conon

-- Advance pointer to next fact in manager.

B-63

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
-— If the fact buffer is empty at this point there is an error
-~ in the format.

if Environment_Types.Fact_Buffexr_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);
Text_10.Put_Line("I am Exp: data-e-v-chg.Is Done ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-~ Get a fact.
A_Fact:= Environment_Types.Fact_Buffer Package.Value Of Item
(Fact_Pointer);

-- The series of fact(s) should be the Data Element Version Changes.
-- There is at least one data-e-v-chg fact and possible more.
it A_Fact(1..12) /= "data-e-v-chg" then
Text_IO0.Put_Line(A_Fact);
Text_X0.Put_Line("I am Exp: data-e-v-chg. "y
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Columns 14 through 38 must be the same data element version name.
if A_Fact(14..38) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-e-v-chg.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;
end 1f;

-- If the version change 1s null then we are done with this attrabute.
-- Need only to advance the pointer by one for the outer loop.

if A_Fact(40..43) = "null" then
-- There is no version change for the data element, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager. O0(1) time.

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
else
-~ There must be one or more lines in the version changes.

-~ This loop will run x times where x is the number of times in the
-- version change.

while A_Fact(1..12) = "data-e-v-chg" loop
-- I realize thas check is repetitive on the first iteration.

B-64

-~ Columns 14 through 38 must be the same data element name.

-- 0(1) time complexity.

if A_Fact(14..38) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-e-v~chg. while ");
raise Invalid_Fact_Sequence_For_Data_Element;

end if;

-- Pull the version from the fact.
Version_Line:= A_Fact(40..99);

-~ Add the version change to the Version Changes part of the
-- Data Element record. 0(1) time.

Environment_Types.Text_Buffer_Package.Add_Item
(Version_Line, Data_Element_Record.Version_Changes, The_Iterator);

-- Advance pointer to next fact in manager.
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

-- If it is not empty get the next fact. 0(1) time.
if not Environment_Types.Fact_Buffer_ Package.Is_Done
(Fact_Pointer) then
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);
else
-- If this is the last fact of the last data element exit the
-= loop.
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-e-v-chg. else ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;
end loop;

—-- There were .ne or more lires in the version change so now must

-~ place them with the data element in the data element manager. 0(1).

Data_Element_Manager.Set_Data_Element_Version_Comments
(Data_Element_Pointer, Data_Element_Record.Version_Changes);

end if;

~—*%* get Data Element Date Facts *¥*¥ ———————mmm e e e

if Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_IO0.Put_Line(A_Fact):
Text_IO.Put_Line("I am Exception: data- "Y;
raise Invalid_Fact_Sequence_For Data_Element;

if

end if;

-~ Get a fact. O(1) time.
A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

-- This fact should be the data element date.

it A_Fact(1,.13) /= "data-ele~date” then
Text_.I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-ele-data ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

== Columns 15 through 39 must be the same Data element name.
it A_Fact(15..39) /= Data_Element_Record.Name then
Text_I0.Put_Line(A_Fact);
Text_I0.Put_Line("I am Exp: data-ele-data.Name ");
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

—-~ Columns 41 through 48 hold the data element date if it is
=~ not null.
if A_Fact(41..44) = "null" then
~~ Do nothing, there was no data element date.
null;
else
== Get the date.

Data_Element_Record.Date:= A_Fact(41..48);

~~- Do 0(1) procedure call to update the Data element in the
~-- Data Element manager.

Data_Element_Manager.Set_Data_Element_Date
(Data_Element_Pointer, Data_Element_Record.Date);

end if;

-- *x* Get Data Element Author Facts *** —-——-

Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) then
Text_I0.Put_Line(A_Fact);

Text_I0.Put_Line("I am Exception: data-element-author Is_Done *);
raise Invalid_Fact_Sequence_For_Data_Element;
end if;

-- Advance pointer to next fact in manager. 0(1).
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

~- Get a fact. 0(1) time.

A_Fact:= Environment_Types.Fact_Buffer_Package.Value 0f_Item

-~ MODULE NUMBER: TBD -
-~ DESCRIPTION: --
- When the flag Type 0f _Facts _Flag is set to true,it means the --
- client procedure wants all the facts that are necessary for --
~-- the .esm file. If the flag is false, then the facts for -
- the expert system are returnsd. Facts of the same type have —-
-- the same format no matter where they are destined. In this --
- case, the historical name is brt a single fact. Future -
-= modifications to SAtool II could include more information in --
- the Historical_Activity_Manager however, thus this procedure --
-- is of use. -
-~ historical tuple facts: (retrieved when creating a .esm file ox —-
- when performing check syntax) ==
~-- 1) a predefined attribute name (historical-name) -
-~= 2) the historical name (if the name is null, the word ‘null’ is --
- placed in the field. -
-- ALGORITHM: All simple O(1) statements and 2 0(1) procedure calls. --
-~ PASSED VARIABLES: Type_Facts_Flag, Fact_Manager -
-~ RETURNS: None --
—-- GLOBAL VARIABLES USED: None -~
-- GLOBAL VARIABLES CHANGED: None -~
-~ FILES READ: None -
-~ FILES WRITTEN: None --
~- HARDWARE INPUT: None -
-- HARDWARE OUTPUT: None -
—~ MODULES CALLED: None -=
~— CALLING MODULES: TBD -
-- ORDER-OF: 0(1) -
-- AUTHOR(S): Min-fuh Shyong -
-~ HISTORY: None (Initial Implementation) --

procedure Retrieve Historical Activity _Facts
(Type_Facts_Flag : in boolean;
Fact_Manager ; in out
Environment_Types.Fact_Buffer_Package.Manager Type) is

-- Local Declaration --

Fact_Pointer : Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact : Environment_Types.Fact_String _Type;
Blank_Fact : Environment_Types.Fact_String Type := (others => ' ?);

~- Historical Activity Declarations --

Historical _Activity_Record :
Historical_Activity_Class.Historical_Activity_Record_Type;

Historical_Activity_Pointer:
Historical_Activity_Manager.Historical_Activity_Pointer_Type;

13-68

begin
-- Clear the passed in fact_manager --
Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);
-~ Reset --

Historical_Activity_Manager.Reset_Historical_Activity_Iterator;

-— take facts -—

while not Historical_Activity_Manager.Historical_ Activity_Iterator_Done loop

Historical_Activity_Record :=
Historical_Activity_Manager.Value Of_Historical_Activity_At_Iterator;

A_Fact = Blank_Fact;

A_Fact(1..16) := "historical-tuple";

A_Fact(17) 1= 0,

A_Fact(18..42) := Historical_Activity_Record.Project;
A_Fact(43) =0 0

A_Fact(44..63) := Historical_Activity_Record.Activity_Number;

-- Store the facts --

Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

Historical _Activity_Manager.Advance_Iterator_To_Next_Historical_Activity;

end loop;
end Retrieve_Historical_Activity_Facts;

-~ DATE: 12/06/90 --
—-- VERSION: 1.0 --
—-- NAME: ***PROCEDURE RESTORE HISTORICAL AVTIVITY FACTS*x* -
-- MODULE NUMBER: TBD -=
~- DESCRIPTION: Restores the Historical Activity facts into the --
-- Historical Activity Manager -
—-— ALGORITHM: A single while loop controls the execution with an ~-=
-~ embedded call to an 0(i) procedure. -~
-~ PASSED VARIABLES: The_Fact_Buffer (contains the Historical --
Activity facts) --

B-69

-~ RETURNS: None --
-~ GLOBAL VARIABLES USED: None -
-~ GLOBAL VARIABLES CHANGED: None -
—~~ FILES READ: None -
-~ FILES WRITTEN: None --
-- HARDWARE INPUT: None --
—- HARDWARE OUTPUT: None -
-- MODULES CALLED: None -—
-~ CALLING MODULES: TBD -
-~ ORDER-OF: O0(i * i) where i is the number of facts in the fact -
== buffer which should be the same as the no. of Historical Activity --
-- facts. -
—- Note that all string slice operations are modeled as 0(1) time. --
-~ AUTHOR(S): Min-fuh Shyong -
-~ HISTORY: None (Initial Implementation) -

procedure Restore_Historical Activity_Facts
(The_Fact_Buffer: in
Environment_Types.Fact_Buffer_Package.Manager_Type) is

-- Local Declaration --

Fact_Pointer : Environment_ Types.Fact_Buffer_Package.Iterator_Type;
A_Fact : Environment_Types.Fact_String_Type;

First_Char : natural := 0;

Char_Position : natural := 0;

Temp_Pos : natural := 0;

~- Historical Activity Declarations --

Historical_Activity_Record :
Historical_Activity_Class.Historical_Activity_Record_Type;

Historical_Activity_Pointer:
Historical_Activity_Manager.Historical_Activity_Pointer_Type;

~~ add new variable --
Null_Historical_Activaty_Record
Historical _Activity_Class.Historical_Activity_Record_Type;

begin
== check for empty buffer of facts. If empty, do nothing. --

if Environment_Types.Fact_Buffer Package.Is_Empty(The_Fact_Buffer) then
return;
end if;

-- Initialize iterator to first historical activity facts --

Environment_Types.Fact_Buffer Package.Initialize_Iterator
(Fact_Pointer, The_Fact_Buffer);

-- Engage lop to extract the facts froma a buffer --
-~ This loop is 0(i) time.
~-- Where i is the number of facts in the buffer

while not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop

-- Get a record

A_Fact := Environment_Types.Fact_Buffer_Package.Value 0f_Item

(Fact_Pointer) ;

-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All String assignments are modeled as 0(1);
-- Insure the fields are all blanks

Historical Activity_Record := Null_Historical_Activity_Record;

-- Retrieve the facts

Historical_Activity_Record.Project := A_Fact(18..42);
Historical_Activity_Record.Activity_Number := A_Fact(44..63);

-~ load this fact back into Historical Activitv Manager

Historical Activity Manager.Create_Historical_Activity
(Historical_Activity_Record, Historical_Activity_Pointer);

-~ Advance pointer --
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

end loop;
end Restore_Historical_Activity_Facts;

DATE: 12/01/90 --
VERSION: 1.0 -

NAME: *%% RETRIEVE CALLS RELATION FACTS *** --
MODULE NUMBER: TBD --
DESCRIPTION: —--

When the flag Type_ .0f_Facts_Flag is set to true,it means the --
client procedure wants all the facts that are necessary for --
the .esm file. 1f the flag is false, then the facts for -~
the expert system are returned. Facts of the same type have --
the same format no matter where they are dest.ned. In this --

- case, the calls name is but a single fact. --
-- calls relation tuple facts: (calls-relation-tuple Activity -
- History-tuple) --
-- where history is another tuple in Historical _Activity --
-~ ALGORITHM: All simple O(1) statements and 2 0(1) procedure calls. -~
—— PASSED VARIABLES: Type_Facts_Flag, Fact_Manager -
—-— RETURNS: None -
-- GLOBAL VARIABLES USED: None -
—~- GLOBAL VARIABLES CHANGED: None -
-~ FILES READ : None -
~— FILES WRITTEN: None -
—-— HARDWARE INPUT: None -
-~ HARDWARE OUTPUT: None -
—-- MODULES CALLED : None --
~= CALLING MODULES: TBD -
-- ORDER-OF: 0(1) --
~- AUTHOR(S): Min-fuh Shyong ~-
—-— HISTORY: None {Initial Implementation) -

procedure Retrieve_Calls_Relation_Facts
(Type.Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) 1s

~- local declaration --

Fact_Pointer : Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact : Environment_Types.Fact_Straing_Type;
Blank_Fact : Environment_Types.Fact_String_Type := (others => ’ ');

-- calls related declarations --

Calls_Relation_Record : Calls_Relation_Class.Calls_Relation_Record_Type;
Calls_Relation_Pointer : Calls_Relation_Manager.Calls_Relation_Pointer_Type;

begin
== clear the buffer --

Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);
-- reset --

Calls_Relation_Manager.Reset_Call ;_Relation_Tuple_Iterator;
-- teke facts --

while not Calls_Relation_Manager.Calls_Relation_Tuple_Iterator_done loop

Calls_Relation_Record :=

Calls_Relation_Manager.Value_Of_Calls_Relation_Tuple_At_Iterator;

A_Fact := Blank_Fact;

A_Fact(1..20) := "calls-relation-tuple";
A_Fact(21) =0 0y

A_Fact(22..46) := Calls_Relation_Record.Activity;

A_Fact (47) =00
A_Fact(48..72) := Calls_Relation_Record.History_Tuple.Project;
== with one more . extension to get the

-~ nested record History_Tuple.Project
| .

A_Fact(73)
A_Fact(74..93) :

Calls_Relation_Record.History_Tuple.Activity_Numbo:r;

Environment_Types.Fact_Buffer_Fackage.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

Calls_Relation_Manager.Advance_Iterator_To_Next_Calls_Relation_Tuple;
end loop;

end Retrieve_Calls_Relation_Facts;

-- DATE: 12/06/90 - |
~- VERSION: 1.0 -- l
~-- NAME: *+*xPROCEDURE RESTORE CALLS RELATION FACTS**x - f
-- MODULE NUMBER: 7iBD - :
~- DESCRIPTION: This procedure accepts a buffer of calls relation -- |
-- facts. -
—-- Restores that information into the calls relation manager. --
-~ 0f special note 1s that the procedure assumes the facts are in the --
-- same order in which they were stored. ~--
-— ALGORITHM: A single while loop controls the execution with an -
-- embedded call to an 0(i) procedure. --
-- PASSED VARIABLES: The_Fact_Buffer (contains the facts) --
—-- RETURNS: None -
-— GLOBAL VARIABLES USED: None -
-- GLOBAL VARIABLES CHANGED: None -
== FILES READ: None --
-~ FILES WRITTEN: None --
-- HARDWARE INPUT: None -
-- HARDWARE OUTPUT: None -
-- MODULES CALLED: None -

—-— CALLING MODULES: Essential_IO.Restore_Project --
-- ORDER-OF: order of is O(a * max (x, a)) where a is the --
-- number of calls, x is the number of lines in a historical activity --
-- Note that all string slice operations are modeled as 0(i) time. -
-~ AUTHOR(S): Min-fuh shyong --
-- HISTORY: None (Initial Implementation) --

procedure Restore_Calls_Relation_Facts
(The_Fact_Buffer : in
Environment_Types.Fact_Buffer_Package.Manager Type) is

~- Local Declarations —-

Fact_Pointer: Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact: Environment_Types.Fact_String_Type;

First_Char: natural:= 0;
Char_Position: natural:= 0;
Temp_Pos: natural:= 0;
More_Descriptions_Flag: boolean;

-~ Calls Relation Related Declarations --

Calls_Relation_Record: Calls_Relation_Class.Calls_Relation_Record_Type;
Calls_Relation_Pointer: Calls_Relation_Manager.Calls_Relation_Pointer_Type;

Null_Calls_Relation_Record: Calls_Relation_Class.Calls_Relation_Record_Type;

-~-The_Iterator: Environment_Types.Text_Buffer_Package.Iterator_Type;
~~A_Description_Line: Environment_Types.DD_Text_Type;

--A_Child: Environment_Types.DD_Field_Type;

--Found_Flag: boolean:= False;

—--Result _Flag: boolean;

-~ Exception --

-~ This exception is declared here because the Essential IO package does
-- not check to see the facts are in any specific order.
~-Invalid_Fact_Sequence_For_Cals_Relation: exception;
~-Activity_Hierarchy_Error_During_Restore: exception;

begin

—- Check for empty buffer of facts. If empty, do nothing.

if Environment_Types.Fact_Buffer_Package.Is_Empty(The_Fact_Buffer) then
return;

end if;

-- Initialize iterator to first tuple fact

Environment _Types.Fact_Buffer_Package.Initialize_Iterator
(Fact_Pointer, The_Fact_Buffer);

~- Engage loop to extract the cassl relation facts from a buffer
~- one at a time

while not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop
-- Get a record.

B-74

A_Fact:= Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer);

Calls_Relation_Recoxrd := Null_Calls_Relation_Record;

Calls_Relation_Record.Activity := A_Fact(22..46);
Calls_Relation_Recoxrd.History _Tuple.Project := A_Fact(48..72);
Calls_Relation_Record.History_Tuple.Activity_Number := A_Fact(74..93);

Calls_Relation_Manager.Create_Calls_Relation_Tuple
(Calls_Relation_Record, Calls_Relation_Pointer);

Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);
end loop;
end Restore_Calls_Relation_Facts;

-~ DATE: 12/03/90 ~--

~~ VERSION: 1.0 -
~= NAME: *x+ RETRIEVE CONSISTS OF RELATION *%*x -
-- MODULE NUMBER: TBD -=
-- DESCRIPTION: -

~-- When the flag Type_0f_Facts_Flag is set to true,it means the --
- client procedure wants all the facts that are necessary for --
- the .esm file. If the flag is false, then the facts for -
- the expert system are returned. Facts of the sam- type have --
- the same format no matter where they are destined. In this ==~
-- case, the historical name is but a single fact. Future -
~= modifications to SAtool II could include more information in --
-= the Historical_Activity_Manager however, thus this procedure --
~-= is of use. -
-- consists of relation facts: (retrieved when creating a .esm file --
~-= or when performing check sysntax -~
~- 1) a predefined attribute name (consists—of-name) --
~= 2) the consists of name (if the name is null, the woxd ‘null’ is --
~-= placed in the field. ~-=
~~ ALGORITHM: All simple D(1) statements and 2 0(1) procedure calls. --
-- PASSED VARIABLES: Type_Facts_Flag, Fact_Manager -
-- RETURNS: None --
-~ GLOBAL VARIABLES USED: None -
-~ GLOBAL VARIABLES CHANGED: None -=
~= FILES READ: None -~
-— FILES WRITTEN' None -~
-— HARDWARE INPUT: None -
-— HARDWARE OUTPUT: None -
~- MODULES CALLED: None --
-- CALLING MODULES: TBD -
-- ORDER-OF: 0(1) -

-- AUTHOR(S): Min-fuh Shyong --
~- HISTORY: None (Initial Implementation) --

procedure Retrieve_Consists_0f_Relation_Facts
(Type_Facts_Flag : in boolean;
Fact_Manager : in out
Environment_Types.Fact_Buffer_Package.Manager_Type) is

-- local declaration --

Fact_Pointer : Environment_Types.Fact_Buffer_Package.Iterator_Type;
A_Fact : Environment_Types.Fact_String_Type;
Blank_Fact : Environment_Types.Fact_String Type := (others => * ?);

-- consists of declarations —-

Consists_0f_Relation_Record
Consists _0f_Relation_Class.Consists_0f_Relation_Record_Type;

Consists_0f_Relation_Pointer :
Consists_0f_Relation_Manager.Consists_0f_Relation_Pointer_Type;

begin
-- Clear the passed in fact_manager --
Environment_Types.Fact_Buffer_Package.Clear(Fact_Manager);
-- Reset -~

Consists_0f_Relation_Manager.Reset_Cunsists_Of_Relation_Tuple_Iterator;

-- take facts --

while not Consists_0f_Relation_Manager.
Consists_0f_Relation_Tuple_Iterator_Done loop

Consists_0f_Relation_Record:=
Consists_0f_Relation_Manager.
Value_0f_Consists_Of_Relation_Tuple_At_Iterator;

A_Fact = Blank_Fact;
A_Fact(1..16) := "consists-of-name";
A_Fact(17) =00

A_Fact(18..23)
Padded_String(ainteger’image(Consists_0f_Relation_Record.Consists_0f_Id), 6);
A_Fact(24) 1= 0

A_Fact(25..49) := Consists_Of_Reiation_Record.Parent;

A_Fact(50) 1= 0 0

A_Fact(51..75) := Consists_0f_Relation_Record.Child;
Environment_Types.Fact_Buffer_Package.Add_Item
(A_Fact, Fact_Manager, Fact_Pointer);

Consists_0f_Relation_Manager.
Advance_Iterator_To_Next_Consists_0f_Relation_Tuple;

end loop;

end Retrieve_Consists_Of_Relation_Facts;

-- DATE: 12/06/90 --
-- VERSION: 1.0 --
-~ NAME: **x*%PROCEDURE RESTORE CONSISTS OF RELATION FACTS*** -—-
-~ MODULE NUMBER: TBD -=
—-- DESCRIPTION: Restores the consists of relation facts into the -
-~ Consists 0f Relation Manager --
-~ ALGORITHM: A single while loop controls the execution with an -
-~ embedded call to an 0(i) procedure. -
-- PASSED VARIABLES: The_Fact_Buffer (contains the consists of -
-- relation facts) --
-~ RETURNS: None -
-~ GLOBAL VARIABLES USED: None --
-- GLOBAL VARIABLES CHANGED: None --
-- FILES READ: None -
-~ FILES WRITTEN: None --
—-- HARDWARE INPUT: None --
-~ HARDWARE OUTPUT: None -=
-- MODULES CALLED: None -
-~ CALLING MODULES: TBD -
-~- ORDER-OF: O0(i * i) where i is the number of facts in the fact -
-~ buffer which should be the same as the no. of Consists of relation —-
-- facts. -
-- Note that all string slice operations are modeled as 0(1) time. -~
-- AUTHOR(S): Min~fuh Shyong -
~-- HISTORY: None (Initial Implementation) --

procedure Restore_Consists_0f_Relation_Facts
(The Fact_Buffer: in
Environment_Types.Fact_Buffer_Package.Manager_Type) is

-- Local Declaration --

Fact_Pointer : Environment_Types.Fact_Buffer_ Package.Iteratoxr_Type;
A_Fact : Environment_Types.Fact_String_Type;
First_Char : natural := 0;

Char_Position : natural := 0;
Temp..Pos : natural := 0;

-- Consists 0f Relation Declarations -~

Consists_0f_Relation_Record :
Consists_0f_Relation_Class.Consists_0f_Relation_Record_Type;

Consists_0f_Relation_Pointer:
Consists_0f_Relation_Manager.Consists_0f_Relation_Pointer_Type;

-- add new variable --
Null_Consists_0f_Relation_Record
Consists_0f_Relation_Class.Consists_Of_Relation_Record_Type;

begin
-- check for empty buffer of facts. If empty, do nothing. --

if Environment_Types.Fact_Buffer_Package.Ils_Empty(The_Fact_Buffer) then
return;
end if;

-- Initialize iterator to first consists of relation facts --

Environment_Types.Fact_Buffer_Package.Initialize_Iterator
(Fact_Pointer, The_Fact_Buffer);

-- Engage lop to extract the facts froma a buffer --
~-- This loop is 0(i) time.
-~ Where i is the number of facts in the buffer

while not Environment_Types.Fact_Buffer_Package.Is_Done(Fact_Pointer) loop
-- Get a record
A_Fact := Environment_Types.Fact_Buffer_Package.Value_0f_Item
(Fact_Pointer) ;
~-—- Since we put the information in the string, we know the
-~ exact columns where information should be.
~- All String assignments are modeled as 0(1);
-- Insure the fields are all blanks
Consists_0f_Relation_Record := Null_Consists_Of_Relation_Record;
-- Retrieve the facts
Consists_Of_Relation_Record.Consists_0f_Id :=

integer’value(A_Fact(18..23));
Consists_Of_Relation_Record.Parent := A_Fact(25..49);

B-78

Consists_0f_Relation_Record.Child := A_Fact(51..75);
-- load this fact back into Consists Of Relation Manager

Consists_0f_Relation_Manager.Create_Consists_0f_Relation_Tuple
(Consists_0f_Relation_Record, Consists_0f_Relation_Pointer);

-- Advance pointer --
Environment_Types.Fact_Buffer_Package.Get_Next(Fact_Pointer);

end loop;

end Restore_Consists_0f_Relation_Facts;

end Essential_Fact_Utilities;

B-79

Appendix C. CLIPS RULE BASE

§ ko ARk ok sk ok sk ok ks ok kA lok oK S Ao R KK Kk ok
R Essential Subsystem Rule Base HH

H
HN
;; File Name: satool2.clp

; Date Last Updated: 24 May 1991
;+ Author: Min-fuh Shyong, GCS-91j
;; Points of Contact: Dr. Gary Lamont ;
;+ DESCRIPTION:
HH This file contains the rule base used by HH
;3 the CLIPS/Ada expert system portion of the Essential HH
;; Subsystem. The idea was initiated by Terry Kitchen in HH
;; his thesis but needs to be expanded and completed for the ;;
;3 follow on researchers. This subsystem is to eventually be ;;
;3 integrated with another system to form SAtool II, which HH
;3 with another system to form SAtool II, which is an Ada HH
; is an Ada based IDEFO development tool.
;; PURPOSE:

HH The purpose of this rule base is to check the HH
;3 syntactic features of an IDEFO model whose representation ;;
;; has been converted to CLIPS readable facts.
;3 METHODOLOGY: HH
HH Whenever the "check syntax" option is chosen within ;;
;; the Essential Subsystem main menu, this rule base is loaded;;
;; into the working memory of the CLIPS/Ada expert system. M
;; The same option also begins the "recognize-act" cycle of HH
;+ the CLIPS inference engine which uses the rules below to A
;3 "match" the LHS of rules with facts, resolve conflicts M
;; among eligible rules, and then fire the RHS of rules, until;;
;3 no rules are eligible to fire. This file must be within i
;3 SCOPE:
HE At the present time, this rule base checks the A
;; syntactical features associated with the "essential" data
;5 of an IDEFO model.

;; RULES AND THEIR FUNCTION:

i The following IDEFO syntax checking rules are completed: ;;

;3 1. Each activity is checked to ensure it has at least one ;;
MK output and one control.
;3 2. For each activity, the number of its input, output, HH
H control and mechanisms is checked to suggest that they ;;
HH are not more than 5.
;3 3. The project is checked to ensure a name is given for ;
3l the project.
;3 4. Each activity is checked to ensure an activity number HH
HH is assigned. No duplicated activity name is also HH
H checked.
;3 5. Each activity is checked to ensure some description NN

C-1

H are associated with that activity. ;
73 6. Each data element is checked to make sure that the HH
HN data name, description are provided. And no duplicated ;;
; data element name exists. HH
; 7. Each parent activity with a child name with it, the HH
H child’s name must be found. HE
;3 8. Hierarchical rules for creating boundary arrow facts HE
between any parent with 2, 3, 4, 5, or 6 child

H HH
B activities are implemented. A
;3 9. Rules for checking the consistency between those parent ;;
H diagram and their child diagrams are provided. HA

;310. Rule for checking inconsistent icom code between parent ;;
HH and child diagrams.
;;11. Rule to check if any parent activity has more than 6 ;
HH child diagrams.

1312, Utility rules builds up the syntax checking

HH environment.

;313. Boundary icom number consistancy checking rules.
;114. Auxiliary rules supporting the hierarchy checking rules.;
;3 OUTPUT:

A IDEFO syntax violations cause the user to receive
;3 five kinds of messages:

R 1. CONGRATULATORY: No syntax errors was found. If no ;;
HE syntax error facts was asserted after the ;;
i3 rules checking is done, then this message ;;
HH w1ll be presented at the end of all the HH
HH other messages. HH
HH 2. ERRORS: Syntax error encountered, syntax error HH
He fact will be asserted, program will be HH
s halted after all the checkings are done. HH
HH 3. WARNING: Some features of the users project work ;;
s vere discovered that might cause problem. ;;
K 4. NOTICE: Reminder to the user that something should ;;

HH be carefully done.
i 5. SUGGESTION: Suggest the user that further manually ;;

K recheck might be helpful to find o
N logical errors that cannot be found by ;;
HH the syntax checking rules. HH

5 3 Rk kK ook oKk R kK ok sk kokok ok o ok ok sk ok ok ok KRRk sk o ok skokoR ok ok ok sk ok ok kok ko

JRRRkRooookokR ok Environment Utilaty rule skkkssskkkssiksdonkdokskkkkk
; These rules does not do the syntax checking functions, but are necessary
; for the syntax checking package.

..

3392323333393 3 33233335333 3233333333332 333353333932332I33I3IrIr

; This 1xle prints out the necessary headings for the syntax checking
; functions. "t is guaranteed by the salience declaration to be fired first.

...

3322333232332 3322333535333 3303223323323 3 3333332333933 3339333399223 3233))

C-2

(defrule print-introduction
(declare (salience 5000))
(initial-fact)
=>
(printout t crlf "xxx+ Essential Subsystem Syntax Checking Messages *x¥x"
crlt)

RN N RN R R R RN R R R R R R R R R N R R R R R R R R R R R R R R R R F N RN R R F R N R R R A
; Right following the heading, the name of the project to be checked is

; print our by this rule.

A R R R R R S R R N R R R R R R R R R R R R R R SR R R R R R R R R R R R

(defrule print-project-name
(declare (salience 4999))
(project-name 7name)
=>

(printout t "===> The project == "?name " == is checked as follows:" crlf crlf)

..

)’)D’))"l’)l’)))”lrl!)”)’)!)!))9)’,l))”Dl)'l))))lﬁ)l)D"’)!)’t’))’))))’
;If any errors have occured, this rule will stop the system at this point.
;

P N R R R R R R R R R R R R R R R T N S R N N IR I A R R P A S I IR ST AP AP ST ST PSSP ST .
”,’,,)”)’l”’,,,,””””)’,',,)’)),”)’!’,’))’l))))’)’)))l,’)”’,,l’)

HH
(defrule exit-if-error

(declare (salience -8))

(syntax-error-occurred)

..

B R RN R A I

; If no errors were found, then a congratulatory message will be presented,
; but also reminds the user to check his work again.

..

)’!”P')PF’DD'))’),”I”’l)'l))lIll)))l!")))))1)!1)l))))!l)))’)))l)l)l))))’

(defrule no-error-congratulate
(declare (salience -8))
(not (syntax-error-occurred))
=>
(printout t "CONGRATULATIONS: No syntax errors encountered." crlf)
(printout t " SUGGESTION: Please recheck logical structure of your project "
(printout t " for perfection" crlf)

)

;EkEkkkdokk Rk kR ckkkkkkkak Tules for icom-facts #kskkssiikikkkidkkiokiondkkkkkk
; Those rules check possible errors that could happen in icom facts

...

2923325533293 III DI IIDN DI I NI NI 9D DI NI NI NN DRIIIDIIIIDNN

crlf)

IR ERERER] I N N N N N N A N N A N N S N S SR Y IEERERE
””"’,))"l,”’))’”)")”",,’l,,”,,,9”,l”)”’),”””’]!))”)!’)l’,

If an activity has no output, no control, than it is an syntax error.
H
(defrule zero-outputs
(icom-activity-outputs 7act 0)
=>
(printout t "ERROR: Activity " ?7act " needs at least i output."
crlt)
(assert (syntax-error-occurred))

)

(defrule zero-controls
(icom-activity-controls ?act 0)
=>
(printout t "ERROR: Activity " ?7act " needs at least 1 control."
crlf)
(assert (syntax-error-occurred))

)

......................................

9!”)’)’,”""l,,)’”’)’))’))’!)’l),”’)")”’)”)!”)’)”’))’l)”l”l)))l!
; Checks if the inputs, mechanisms, controls or outputs of an activity
; is more that 5, than a warning message will be presented.

(defule too-many-mechs
(icom-activity-mechanisms 7act-mech 7num-mech)
(test (> ?num-mech 5))
=>
(prantout t "WARNING: Activity " ?act-mech " has too many
mechanisms.'" crlf)

(defrule too-many-outputs
(icom-activity-outputs ?act-out ?num-out)
(act-numb ?act-out ?7out-num)
(test (> ?num-out 5))
=>
(printout t "WARNING: Activity " ?Zout-num " " ?act-out " has too many
outputs." crlf)

(defrule too-many-controls
(icom-activity-controls ?act-cont 7num-cont)
(act-numb ?act-cont ?cont-num)

C-4

(test (> 7num-cont 5))

=>
(printout t "WARNING: Activity " ?cont-num " " ?act-cont " has too many
controls." crlf)

(defrule too-many-inputs
(icom-activity-inputs ?act-in 7num-in)
(test (> 7num-in B))
=>
(printout t "WARNING: Activity " ?act-in " has too many inputs." crlf)

Rk kR kkkkk Tules for project-facts kkkkskkickkkdokkokkokkkkkk
; The only rule for a project is to check if there is a project name.

(defrule null-project-nane
(declare (salience 8))
(project-name null)
=>
(printout t "ERROR: The current project does not have a name."
crlft)
(assert (syntax-error-occurred))

;RRRRERRRRRRRRROOOOROok R Tiles Tor activity-facts skkkdkickkkkkkkkikkkkkkk
; Those rules check if the necessary attributes of an activity is missing

...

2229252939292 2399295339935 33 3939933229935 2932293232330 3222223233339

; Any activity should have an activity number assigned to it.

..

)’,’)))))’,’D),,,,,)”))",l’,”,),,”7’,””’,’,’l’,’,’)’)!),)’l,’)”’))

(defrule null-activity-number
(act-numb 7activity null)
=>
(printout t "ERROR: Activity " 7activity " must be numbered.”
crlf)
(assert (syntax-error-occurred)))

..

3252302220 20 330NN NS NN SN NI NI IS NIIIINNINNSNIINNIINININNEIY
; Each avtivity should have a descraiption, if not,
; this rule will raise a warning.

...

))I”’lll”)b’l"”l)'l)!)’)))}))))’l’l)l”))!)’I’I’!)))”’)’

(defrule null-activity-description

(act-desc ?activity null)

(act-numb ?activity ?7num)

=>

(printout t "WARNING: Activity number " ?num " " ?activity " needs a
description." crlt))

» than that means its parent has more than 6 child activities.

H
If any activity has a activity number with the last digit more than
6
H

(defrule too-many-children-leveli

=>

(act ?act ?end-num)
(test (> ?end-num 6))

(printout t "Waring: activity A0 has more than 6 child diagrams." crlf)
(printout t "Notice: Please manually check to make sure that there is no" crlf)

(printout t '

)

such an warning lower that 4 levels of hierarchy." crlf)

(defrule too-many-children-level2

=>

(act ?act 7num ?end-num)
(test (> 7end-num 6))

(printout t "Waring: activity A"?num " has more than 6 child diagrams." crlf)
(printout t "Notice: Please manually check to make sure that there is no" crlf)
(printout t " such an warning lower that 4 levels of hierarchy." crlf)

)

(defrule too-many-children-level3

(act 7act ?n1 7n2 7end-num)
(test (> ?end-num 6))

=>

(printout t "Waring: activity A"?nl1 ?n2 " has more than 6 child diagrams." crlf)
(printout t "Notice: Please manually check to make sure that there is no" crlf)
(printout t " such an warning lower that 4 levels of hierarchy." crlf)

)

*Rkkkkdokkkkkkkk rules for hierarchical boundary consistency checks *kkkkx

The boundary data element name and icom code of a parent activity
must be consistent with its child diagrams. Those rules create a
set of boundary facts to be checked for their consistency.

The assumption made here 1s that any parent activity should not have
more than six child diagrams. So the rules are implemented
to create boundary facts for parent activity with 2, 3, 4, 5, and 6
child diagrams separately.

Another set of rules will be used to check the created boundary facts
for activities with different or same number of child activities.

C-6

’]]]

; These rules create boundary Iacts for a parent activity with

; two child diagrams. The first level rule creates those initial
; boundary facts, the second level rules clear the data in child
; diagrams that are not boundary ; data in contrast with their

H brother diagrams.

13

(defrule parent-2child
(declare (salience 100))
?£1<-(act-has-child ?parent2 7child1& null)
7£2<-(act-has-child ?parent2 ?7child2&~?childi& null)
(not (act-has-child ?parent2
?child3%&~7child2&~?child1&~null))
=
(retract ?f1 7£2)
(assert (parent2 ?parent2 ?childl 7child2))
)

(defrule parent2-boundary
(parent2 ?parent2 ?childl 7child2)
(icom-tuple ?paxent2 ?p-data 7p-rel ?)
=>
(assert (parent2-boundary ?parent2 ’p lata 7p-rel))

)

(defrule child2-boundary-childi
(parent2 ?parent2 ?childi ?child2)
(icom-tuple 7childl ?ci-data 7ci-rel 7)
=>
(assert (child2-boundary ?parent2 ?childi ?ci-data ?ci-rel))
)

(defzule child2-boundary-child2
(parent2 ?parent2 7childl 7child2)
(icom-tuple ?child2 ?c2-data 7c2-rel 7)
=>
(assert (child2-boundary ?parent2 ?child2 7c2-data ?c2-rel))

..

IR RN R EEEEE RN EEEEEEE EE R I 2 I A O R B N A A

; The (child2-boundary) facts created by the previous rule

; are only initial boundary facts, which means they still

; have all the data element in the facts. But the data shared by any two

; different child activities with different icom code will not be boundary

arrows for the child activities.

They should be retracted from the
facts already created before the boundary checking actually performs.
And they must be executed after all the initial boundary facts are
already created. This is guaranteed by a higher salience declaration in
the previous rule.

e we we we we wo we

(detrule clear-2child-mid
?7f1<-(child2-boundary ?parent2 ?childi ?cl-data ?ci-rel)
7£2<~(child2-boundary 7parent2 ?child2&~?childi 7ci-data ?c2-rel&~?ci-rel)
=>
(retract 7f1)
(retract 7£2)

--

This rule erase one of the duplicated boundary arrow
; for the icom number check.

l’l’l””))))’)l))’)}”’”’l””"’)ll’l’"’l!”’)’l’)”,"’,)’””

(defrule remove-2child-2boundary
7£1<- (child2-boundary ?parent2 ?childi ?ci-data ?ci-rel)
(child2-boundary ?parent2 ?child2&~7child! ?ci-data ?cl-rel)
=>
(retract 7f1)
)

..

IR
,,,,)))")”ll),”)}’)l,)),),’))l”,))’)””I’)l)’)l))))!’)’))),))ll
.

H

If an intermediate data consists subcomponents, it should be
; retracted as well.

..

’DlDD’)))’))))))’)”!))))))Dl)))’l)’J”")!))’))l)”))l"’))ll!)))}’

(defrule rid-2child-2consists
7£1<~(child2-boundary ?7parent2 7childi ?cil-data 7cl-rel)
7£2<-(child2-boundary 7parent2 ?childl ?c2-data&”?ci-data ?c2-rel&”7ci-rel)
?7£3<~(child2-boundary ?parent2 ?child-p&~?childl 7cp-data&”?ci-datak”?c2-data
?cp-rel&”?ci-rel&”7c2-rel)

(consists-of-name ? 7cp-data 7c2-data)

(consists-of-name ? 7cp-data 7ci-data)

=>

(retract 7f1 72 7£3)

..

)”’l”’)’l'l’)))))l'l}ll’!’Dl!1’PD)))’D)”)’!’))l’l)””!l’!)))})!)')l

; For those parent activity with two child diagrams,

; if a parent boundary data can’t be found in the child boundary data
; or the parent data is not a parent-data of the child data,

; than parent inconsistency occurred.

C-8

(defrule check~2child-parent
(declare (salience -5))
(parent2-boundary ?p-name ?p-data ?p-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (child2-boundary ?p-name ?childior2 ?p-data ?c¢-rel))
=>
(printout t "ERROR: Data inconsistency between parent activity" crlf)
(printout t * " ?p-nzme " data ‘" 7p-rel "' " ?p-data " and its" crlf)
(printout ¢t " child diagrams." crlf)
(assert (syntax-error-occurred))

)

(defrule check-2child-parent-consists
(declare (salience -6))
(parent2-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? 7p-data 7c-data)
(not (child2-boundary ?p-name ?child2 ?c-data ?c¢2-rel))
=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p~rel "’ " 7p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

)

..

ll”l”l)),)lll)l)’))’llll)ll!J)’l,!))l)1)11)))1))’)1))).!)!’
; If a parent finds a child with same data but different
; relation, then it is an icom inconsistency.

..

),b’))’!’)”’)”D’D’)"l)D”’)’I’lll'll”]l”lll))'l)ll))Dl”)

(defrule check-2child-parent-icom
(declare (salience -5))
(parent2-boundary ?p-name ?p-data 7p-rel)
(child2-boundary ?p-name ?childl ?p-data ?c-rel)
(test (neq 7p-rel 7c-rel))

=>
(printout t "ERROR: icom inconsistency between activity " crlf)
(printout t " " ?p-name " and its child diagram " ?childl "." crlf)

(assert (syntax-error-occurred))

..

2222350952000 NN NN N NN NI IINDIDNDINDINNIDNIDIIDIDIIDNDIDIDNDIIDNGSNNY

; This rule checks if a data in child 1s not in their parent
; than child inconsistency with its parent occurred.

...

l”’l)”’)”"l’)”)’)ll’l’ll’l)),lD”I)))l!!D),l)”)”)”)!,l’l

(defrule check-2child~child
(declare (salience -5))
(child2-boundary ?p-name ?childl ?ci-data ?ci-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (parent2-boundary ?p-name 7ci-data ?p-rel))
=>
(printout t "ERROR: Data inconsistency between child
activity " ?childl " data ‘" ?cl-rel "’ " 7ci-data
" and its parent." crif)
(assert (syntax-error-occurred))

)

§ kR kR Aok Rk ok R Rk Ak ok Rk kR ok Rk ok kR ko ok kKoo ok ok ok ok ok
Boundary icom number rules

Those hierarchical rules will create a set of facts calculating
and accumulating the control, output, input, and mechanisms numbers
for each parent activity and their child activities boundary icom facts.

we ws ws we we

Note that these rules are dependants of those used to create toundary
facts for each pair of parent and child activities. So their salience must
be lower to be fired later after those boundary facts have already

been created.

3 kkoRoksk ko ok ook R ok ok Rk AR ok Ak ok ook Kok Aok koK ok ok sk ok ok ok ok ok ook ok

.o we we wse

s e s e R R R N S A A A . R R R R R R R Y e s e
”"”””)’l")))!’l",”"’)”’l')’l,”’))l’}’)l’)””)’l’)l)l’)’)’ll,,’,l

Parent with 2 child diagrams

¢ we we

’

; The initial icom number will be build up by these rules;

..

’l),l””,,”)")"’)’,,l,,I)D,”’,”,l””’)!,,’,””"’l”’)}’)l’)’))))’,,'

(defrule parent2-icom-c
(declare (salience -2))
(parent2-boundary ?p2-name ?ci ?c¢2 7p2-data c)
=>
(assext (parent2-icom ?p2-name ?p2-data control 1))

)

(defrule parent2-icom-o
(declare (salience -2))
(parent2-boundary 7p2-name ?7c1 ?¢2 ?p2-data ¢)
=>
(assert (parent2-icom ?p2-name ?p2-data output 1))

)

(defrule parent2-icom~-i

(declare (salience ~-2))

(parent2-boundary ?p2-name ?c¢1 7c2 ?p2-data i)
=>

(assert (parent2-icom ?p2-name ?p2-data input 1))

)

C-10

(defrule parent2-icom-m
(declare (salience -2))
(parent2-boundary ?p2-name ?cl 7¢2 ?p2-data m)
=>
(assert (parent2-icom ?p2-name ?p2-data mech 1))

)

N N R S N R R R R R R R R S RS R R R R R R R R R R R RN R R R R F R R A
; As the icom facts are created, these rules will add up
; the total number of icom for each activity.

S N335 0300353303303 335383332353533 0035038339333 33335
(defrule parent2-control-add

(declare (salience -3))

?7f1<-(parent2-icom ?p2-name ?datal control ?one)

7£2<~(parent2-icom ?p2-name ?data2 control 7n)

(test (neq ?datal ?data2))

=

(retract ?f1 7£2)

(bind ?total (+ 7one 7n))

(assert (parent2~icom ?p2-name =(gensym) control ?total))

)

(defrule parent2-output-add
(declare (salience -3))
?7f1<~(parent2-icom ?p2-name 7datal output ?one)
7f2<-(parent2-icom ?p2-name 7data2 output 7n)
(test (neq ?datal ?data2))
=>
(retract 7f1 7£2)
(bind 7total (+ ?7one 7n))
(assert (parent2-icom 7p2-name =(gensym) output 7total))

)

.
’

(defrule parent2-input-add
(declare (salience -3))
?7£1<-(parent2-icom ?p2-name ?datal input ?one)
7f2<-(parent2-icom ?p2-name ?data2 input ?n)
(test (neq ?datal ?data2))
=>
(retract ?7f1 ?7£2)
(bind 7total (+ ?7one 7?n))
(assert (parant2-icom ?p2-name =(gensym) input ?total))

)

C-11

]
(defrule parent2-mech-add
(declare (salience -3))
?f1<-(parent2-icom ?p2-name ?datal mech Zone)
?t2<~(parent2-icom 7p2~name ?data2 mech 7n)
(test (neq ?7datal ?data2))
=>
(retract 7f1 712)
(bind 7total (+ 7one ?n))
(assert (parent2-icom ?p2-name =(gensym) mech ?total))

...

.
13 IR NN RN SR RS R E N E N RN RN R ENEREE]

(defrule child2-icom-c
(declare (salience -2))
(child2-boundary ?c2-parent 7c2-name 7c2-data c)
=>
(assert (child2-icom ?c2-parent ?7c2-data control 1))

)

(defrule child2-icom-o
(declare (salience -2))
(child2-boundary ?c2-parent 7c2-name 7c¢2-data o)
=>
(assert (child2-icom 7c2-parent 7c2-data output 1))
)

(defrule child2-icom-i
(declare (salience -2))
(child2-boundary 7c2-parent ?c2-name ?7c2-data i)
=>
(assert (child2~icom ?c2-parent 7c¢2-data input 1))

)

(defrule child2-icom-m
(declare (salience -2))
(child2-boundary ?c2-parent ?c2-name ?c2-data m)
=>
(assert (child2-icom ?c2-parent 7c2-data mech 1))

(defrule child2-control-add

(declare (salience -3))

7f1<-(child2~icom ?c2-parent ?datal control 7one)
?7£2<-(child2-icom 7c2~parent ?data2 control 7?n)
(test (neq 7datal 7data2))

C-12

=>

(retract 711 ?12)

(bind ?total (+ ?one ?n))

(assert (child2-icom ?c2-parent =(gensym) control ?total))

.
L

(defrule child2-output-add
(declare (salience -3))
?7£1<~(child2-icom ?c2-parent ?datai output ?one)
7£2<~(child2-icom ?c2-parent ?data2 output 7n)
(test (neq ?datal ?data2))
=>
(retract 7£1 712)
(bind ?total (+ 7one 7n))
(assert (child2-icom 7c2-parent =(gensym) output ?total))
)

(defrule child2-input-add

(declare (salience -3))

?£1<-(child2~icom ?c2-parent ?datal input ?one)
?722<~(child2-icom ?c2-parent ?data2 input ?n)

(test (neq ?datail ?data2))

=>

(retract ?f1 7£2)
(bind 7total (+ 7one 7n))

(assert (child2-icom 7c2-parent =(gensym) input ?total))

(defrule child2-mech-add
(declare (salience -3))
?721<-(child2-icom ?c2-parent ?datai mech Tone)
7£2<-(child2-icom ?c2-parent ?7data2 mech ?n)
(test (neq 7datal ?data2))
=
(retract ?7f1 7£2)
(bind ?total (+ ?one 7n))
(assert (child2-icom 7c2-parent =(gensym) mech ?7total))

)

R e PR s T P T
; Check Parent with 2 child boundary icom number consistancy.

; If the number of boundary icom for a parent activity is not the same

; with its child activities. A warning will be raised.

’

(defrule check-parent-2child-control
(declare (salience -6))
?7£1<-(parent2-icom ?p2-name ? control ?p)
?£2<~(child2~icom ?p2-name ? control ?c)

(test (!= 7p ?¢))

=>

(retract 7f1 7£2)

(it (> ?p 7¢)

then

(bind ?pd (-~ 7p ?¢))

(printout
(printout
(printout
(printout
(printout
else
(bind ?cd
(printout
(printout
(printout
(printout
(printout
))

t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
t " of parent activity "7p2-name" is "?pd" control(s) more than " crlf)
t " its child activities." crlf)

t " Are there ‘‘consists of’’ data items at boundary?" crilt)

t " Please recheck the syntax." crlf)

(- 7¢ 7p))

t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
t " of the parent activity "?p2-name" is "?cd" control(s) less " crlf)

t " than its child boundary controls." crlf)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crlf)

(defrule check-parent-2child-output
(declare (salience -6))
?t1<-(parent2-icom ?p2-name 7 output ?p)
?7£2<~(child2-icom ?p2-name ? output ?c¢)

(test (= ?p 7¢))

=>

(retract 7f1 ?7£2)

(if (> 7p 7¢)

then

(bind ?pd (- ?p ?¢))

(printout
(printout
(printout
(printout
(printout
else
(bind ?7cd
(printout
(printout
(printout
(printout
(printout
))

t "WARNING, there might be an ERROR: The number of boundary outputs” crlf)
t " of parent activity " ?p2-name " is " ?pd " output(s) more " crlf)

t " than its child activities." crlf)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crlf)

(- 7¢ 7p))

t “WARNING, there might be an ERROR: The number of boundary outputs” crlf)
t " of the parent activity " ?p2-name " is " ?cd " output(s) less " crlf)
t " than 1ts child boundary outputs." crlf)

t " Are there ‘‘consists of’’ data items at boundary?" crif)

t " Please recheck the syntax.” crlf)

C-14

(defrule check-parent-2child-input
(declare (salience -6))
?f1<-(parent2-icom ?p2-name ? input ?p)
722<-(child2-icom ?p2-name ? input ?¢)

(test (!= 7p
=>
(retract 7f1

(it (> 7p 7¢)

then

(bind ?7pd
(printout
(printout
(printout
(printout
(printout
else

(bind ?cd
(printout
(printout
(printout
(printout
(printout

))

?c))

?2£2)

(- ?7p ?¢))
t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

t " of parent activity " ?p2-name " is " ?pd " input(s) more " crlf)

t " than its child activities." crlt)

t " Are there ‘‘consists of’’' data items at boundary?" crli)

t " Please recheck the syntax." crlf)

(- ?¢ ?p))

t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
t * of the parent activity " 7?p2-name * is " ?cd " input(s) less " crlf)
t " than its child boundary inputs."” crif)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crlf)

(defrule check-parent-2child-mech
(declare (salience -6))
?7f1<-(parent2-icom ?p2-name ? mech ?p)
7£2<~-(child2-icom ?p2-name ? mech ?¢)

(test (1= 7p
=>
(retract ?7f1

7¢))

7£2)

(it (> ?p ?¢)

then
(bind ?7pd
(printout
(printout
(printout
(printout
(printout
else
(bind 7-d
(printout
(printout
(printout
(printout
(printout

))

(- 7p ?¢))

t “"WARNING, there might be an ERROR: The number of boundary mechanisms" crif)

t " of parent activity " ?p2-name " is " 7pd " mechanism(s) more " crlf)

t " than its child activities.” crlf)

t " Are there ‘‘consists of’’ cata items at boundary?" crlf)

t " Please recheck the syntax." crif)

(- ?¢c 7p))

t "WARNING, there might be an ERROR: The number of boundary mzchanisms" crlf)
t * ot the parent activity " ?p2-name " 1s " 7cd " mechnaism(s) less " crlf)
t " its child child boundary mechanisms." crlf)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crif)

ll)!’!’!l),)"’ll))’),)))))))’))l’)’l’)),,))))")9)!’)’)’)”l))’l
; Those rules creating boundary facts for parents with
; 3 children.

...

ISR EE NS RN NN SR N N E R R NS N RN E NN EEEEEENEEEEEEEREEE]

(defrule parent-3child
(declare (salience 100))
7p3t1<- (act~has-child ?parent3 ?childi&~null)
7p3£2<- (act-has-child ?parent3 ?child2&~?childi&~null)
7p3£3<~ (act-has-child ?parent3 ?child3%&~?child2%~7childi&"null)
(not (act-has-child ?parent3
?7child4&~?7child3&~?child2&~?child1&"null))
=>
(retract 7p3f1 ?p3f2 7p3f3)
(assert (parent3 7parent3 ?childl ?child2 ?c¢hild3))
)

(defrule parent3-boundary
(parent3 ?parent3 ?childl 7child2 ?child3)
(icom-tuple 7parent3 7p-data 7p-rel ?7)
=>
(assert (parent3-boundary 7parent3 ?p-data ?p-rel))
)

(defrule child3-boundary-childi
(parent3 ?parent3 7childi ?child2 ?child3)
(icom-tuple ?childi ?ci-data ?ci-rel ?7)
=>
(assert (child3-boundary ?parent3 ?childi ?ci-data 7cil-rel))
)

(defrule child3-boundary-child2
(parent3 ?parent3 ?childl ?child2 ?child3)
(icom-tuple ?child2 ?c2-data ?c2-rel ?)
=>
(assert (child3-boundary ?parent3 ?child2 ?7c2-data ?c2-rel))
)

(defrule child3-boundary~child3
(parent3 7parent3 ?7childl 7child2 ?child3)
(icom-tuple ?child3 ?7c3-data ?c3-rel 7)
=>
(assert (child3-boundary ?parent3 ?child3 ?c3-data ?c3-rel))
)

C-16

in the:
(child3-boundary facts)
The only possible data element we want to erase is
any data that is shared by 2 or 3 activities but with different
icom code.
; CONDITION:
1. Any two activities are sharing a data element but
with different icom relationms.
2. All three activities are sharing a data element but
with different icom relationms.
With the declaration of salience, we may assure that
any data element shared by all 3 child activities will be
erased first.

we we W ws we

we wo we we we we

I R R R R RN R R S R S S S R R R R R N N R R R R e

)
,)))i’)),D”’)l”D’i"”’)’!D)’D)D’))JP)D))D’DI’)]))))D)))Ill

(defrule clear-3child-3mid
?£1<~(child3-boundary 7parent3 7childl ?ci-data ?ci-rel)
7£2<-(child3-boundary ?parent3 ?7child2&~?childl 7cl-data ?c2-rel&~7ci-rel)
?£3<-(child3-boundary 7parent3 7child3&~7child2&~?7child1
?cl-data ?c3-rel&”?c2-rel&~7ci-rel)
=>
(retract 7f1)
(retract 7£2)
(xetract 7£3)

..

l').)”D)))l)ll)’))))’)l)l"l)))!’1)’)"Dili’l)Pl))’l’))’))l!”’)!l

; If a intermediate arrow is the input of one box but also the
; output and input of another two boxes. It must be removed before
; the arrow between the other boxes been removed.

...

222339939293 2929959 9893323925329 539339233332933923399)33223)98))

(defrule clear-3child-2mid-i
(child3-boundary ?paernt3 ?childl ?ci-data ?ci-rel)

(child3-boundary ?parent3 ?child2%&~?childl ?cl-data 7c2-rel&~?ci-rel)

7f1<- (child3-boundary ?parent3 ?child3&~?child2&”?childl ?ci-data ?c3-rel)

(test (or (eq ?c3-rel ?c2-rel)

(eq ?c3-rel ?cil-rel)))

=>
(retract 7f1)
)

(defrule clear-3child-2mid

(declare (salience -1))
?£1<-(child3-boundary ?parent3 7childl 7ci-data 7ci-rel)
?£2<~(child3-boundary ?parent3 7child2&”7childl 7?ci-data 7c2-rel& “ci-rel)

=>

(retract ?£1)
(retract 7£2)
)

. PR R R I I S S I A I I .

LY L N A S R IR A RN N R R R A A I NI
)’l”.’,,lll)})))))))’l”l)’))’l”’)’ IEEEEENE NN EERE)

H H
; Remove the duplicated boundary arrows.

R R R R R R
”’),’”),D)’))")l’l)")l!l’))”,’l’l’.ll’)””)’D,Dl)))

(defrule remove-3child-3boundary
(child3-boundary ?parent3 ?childi ?cl-data ?7cl-rel)
7£2<~ (child3-boundary 7parent3 ?child2%&~?childi 7ci-data ?ci-rel)
?£3<- (child3-boundary ?parent3 ?child3%&~?child2&~?childl ?ci-data ?ci-rel)
=>
(retract 7£2 ?£3)
)

(defrule remove-3child-2boundary
(child3-boundary ?parent3 ?childi ?ci-data ?ci-rel)
7£2<~(child3-boundary ?parent3 ?child2&~7childl ?cl-data ?ci-rel)
=>
(retract 7£2)

(defrule rid-3child-2consists
?7f£1<~{child3-boundary ?parent3 ?childi ?ci-data ?ci-vel)
7£2<~(child3-boundary ?parent3 7child2&"?childl ?c.-datag&"?ci-data ?¢2-rel)
7£3<~(child3-boundary ?parent3 ?child-p&~?childi&~7child2
?cp-data&”?c2-data&”7ci-data 7cp-rel&~7c1-rél&”7c2-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? 7cp-data ?c¢i-data)
=>
(retract 7f1 ?7£2 7£3)

...

”1’),)”,))”.’)”’)”’D’l’!’l,’)’l’)!I)”’)l’)”’!””’)J’)’)’))

; This rule check a parent with 3 child diagrams to see if the

; parent boundary data are also a part of it child’s boundary
; data.

..

"l)DD)’DIIIl”)””,”””l!"1,),D)!!’))))l!l)’l))))’l})))’li)}i

(defrule check-3child-parent
(declare (salience -5))
(parent3-boundary 7p-name 7?p-data ?p-rel)

C-18

(not (consists-of-name ? ?p-data ?c-data))
(not (child3-boundary ?p-name ?child3 ?p-data 7c3-rel))

=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ " ?p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

)

(defrule check-3child-parent-consists
(declare (salience -6))
(parent3-boundary ?p-name ?p-data 7p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (child3-boundary ?p-name ?child3 ?c-data ?c3-1el))
=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ " 7p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

..

D”))’)’)l}l)”’!)))’ll)))l)))!)l,)))!’!l’))l))’i)b’)b’l))’l’)’l'
; This rule check if a parent with 3 child diagram aat

; some of them have the same boundary data element but

; with different icom relation.

; Then it is an icom ERROR.

...

I R N R N P E N N E R NN NN

{defrule check-3child-icom
(declare (»alience -5))
(parent3-boundary ?p-name ?p-data ?p-rel)
(child3-boundary ?p-name ?c-name ?p-data ?c-rel)
(test (neq ?p-rel ?c-rel))

=>
(printout t "ERROR: icom inconsistency between activity " crlf)
(printout t " "?p~name " and its child diagram " 7c-name".” crlf)
(assert (syntax-error-occur-ed))
)

...

)D’)’”I!l”l"),l’1lll))’)l"l’l”’)))'))’l’)’))’)’,))D))!lll’)l
; This rule checks if a child has some boundary data element

; but can’t find the same data in its parent then inconsistency

; happened.

...

IR EEEENEEEEEEEEEEEEEEEEEEEEENEEEIFIEEEIIEEEEEEEE NN RN

C-19

(defrule check-3child-child

(declare (salience -5))

(child3-boundary ?p-name ?c-name ?c-data ?c-rel)

(not (consists-of-name ? ?p-data ?c-data))

(not (parent3-boundary ?p-name ?c-data ?p-rel))

=>
(printout t "ERROR: Data inconsistency between child activity
* ?c~name " data ‘" ?c-rel "’ " ?c-data " and its
parent." crlf)

(assert (syntax-error-occurred))

...

IR R RN R EE E EE S EEEE R EEEEEEREEEREREEEEEEEEE RN I

H Parent with 3 child diagrams

H
; The initial icom number was build up by this rule,

...

P3N NS NN DI ISR IRIINNNDNINNNS)RNNINNNDNIDIIDNINIINSNDNINDNIIINNIDNIDNDNSNDNININIDNIDIDIY

(defrule parent3-icom-c
(declare (salience -2))
(parent3-boundary 7p3-name 7p3-data c)
=>
(assert (parent3-icom ?p3-name ?p3-data control 1))

)

(defrule parent3-icom-o
(declare (salience -2))
(parent3-boundary ?p3-name ?p3-data o)
=>
(assert (parent3-icom ?p3-name ?p3-data output 1))

)

(defrule parent3-icom-i
(declare (salience -2))
(parent3-boundary ?7p3-name ?p3-data i)
=>
(assert (parent3-icom ?p3-name ?p3-data input 1))

)

(defrule parent3-icom-m
(declare (salience -2))
(parent3-boundary 7p3-name 7p3-data m)
=
(assert (parent3-icom ?p3-name ?p3-data mech 1))

(defrule parent3-control-add
(declare (salience -3))

C-20

?7f1<~(parent3-icom ?p3-name ?datal control ?one)
?£2<~-(parent3-icom ?p3-name ?data2 control ?n)

(test (neq ?datal ?data2))

=>

(retract 7f1 712)

(bind ?total (+ ?7one ?n))

(assert (parent3-icom 7p3-name =(gensym) control ?total))

)

(defrule parent3-output-add
(declare (salience -3))
7f1<~(parent3-icom ?p3-name ?datal output ?7one)
?7f2<-(parent3-icom ?p3-name ?data2 output 7n)
(test (neq ?datal ?data2))
=>
(retract 7f1 7£2)
(bind ?total (+ ?7one 7n))
(assert (parent3-icom ?p3-name =(gensym) output ?total))

)

(defrule parent3-input-add
(declare (salience -3))
?7f1<-(parent3-icom ?p3-name ?datal input ?one)
?7f£2<~(parent3-icom ?p3-name ?data2 input 7n)
(test (neq 7datail ?data2))
=>
(retract 7f1 7£2)
(bind 7total (+ 7one 7n))
(assert (parent3-icom ?p3-name =(gensym) input ?total))

)

(defrule parent3-mech-add
(declare (salience -3))
?7f1<~(parent3-icom ?p3-name ?datal mech Zone)
?7f£2<-(parent3-icom ?p3-name ?data2 mech ?n)
(test (neq 7datal ?data2))
=>
(retract 7f1 7£2)
(bind 7total (+ 7one 7n))
(assert (parent3-icom 7p3-name =(gensym) mech ?total))

(defrule child3-~icom-c¢

C-21

(declare (salience -2))

(child3-boundary ?c3-parent ?c3-name ?c3-data c)

=>

(assert (child3-icom ?c3-parent ?c3-data control 1))

)

(defrule child3~icom-o
(declare (salience -2))
(child3-boundary ?c3-parent ?c3-name ?c3~data o)
=>
(assert (child3-icom ?c3-parent ?c3-data output 1))

)

(defrule child3-icom~-i
(declare (salience -2))
(child3-boundary ?c3-parent ?c3-name ?c3-data i)
=>
(assert (child3-icom ?c3-parent ?c3-data input 1))

)

(defrule child3-icom-m
(declare (salience -2))
(child3-boundary ?c3~parent ?c3-name ?c3-data m)
=>
(assert (chiid3~icom ?c3-parent ?c3-data mech 1))

)

.
3

(defrule child3-control-add
(declare (salience -3))
?7£1<-(child3~icom 7c3-parent ?datal control ?one)
7£2<-(child3-icom ?c3-parent ?data2 control ?n)
(test (neq ?datal ?datal))
=>
(retract 7f1 7£2)
(bind ?total (+ ?one 7n))
(assert (child3-icom ?c3-parent =(gensym) control ?total))

(defrule child3-output-add
(declare (salience -3))
?7£1<-(child3-icom 7c3~parent ?datal output ?one)
7£2<-(child3~icom 7c3~parent 7data2 output ?7n)
(test (neq ?datai ?data2))
=>
(retract ?f1 7£2)
(bind ?total (+ 7one 7?n))
(assert (child3-icom 7c3-parent =(gensym) output ?total))

C-22

(defrule child3-input-add

-e

(declare (salience -3))
?£#1<-(child3-icom ?c¢3-parent 7datal input Zone)
?7£2<~(childas-icom ?c3-parent ?data2 input ?7n)
(test (neq 7datal 7data2))
=>
(retract 7f1 ?7£2)
(bind ?7total (+ ?one 7n))
(assert (child3-icom ?c3~parent =(gensym) input 7total))

)

(defrule child3-mech-add

.
’
.
)

(declare (salience -3))

?7£1<~{child3-icom ?c3-parent ?datal mech ?one)
7£2<-(child3-icom ?c3-parent ?data2 mech 7n)

(test (neq ?datal ?data2))

=>

(retract 7£1 712)

(bind ?7total (+ Yone ?n))

(assert (child3-icom ?c¢3-parent =(gensym) mech ?total))

)

FAAAAK KRR AR AR AR IOR IR R AR ROR AR AR R ok Ao Kok o
Check Parent with 3 child boundary icom number consistancy

(defrule check-parent-3child~control-no-retract

(declare (salivwnce -6))
(parent3-icom ?p3-name ? control ?p)
(child3-1cor 7p3-name ? control 7c)
(test (1= 7p <))
=>
(it (> 7p 7¢c)
taen
(bind 7pd (- ?p ?¢))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of parent activity "?p3-name" is "?pd" control{s) more than ' crlf)
(printout t " 1ts child activities." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t " Please recheck the syntax.' crlf)

else

(bind ?7cd (- 7¢c ?p))
{printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t " of the parent activity "7p3-name" is "?cd" control(s) less " crlf)

C-23

(printout
(printout
(printout

))

f "
t "
t "

than its child boundary controls." crlf)
Are there ‘‘consists of’’ data items at boundary?" crlf)
Please recheck the syntax." crlf)

(defrule check-parent-3child-output
(declare (salience -6))
7fi<~(parant3-icom ?p3-name ? output ?p)
?£2<-(child3-icom ?p3~name ? output ?c)

(test (1= ?7p 7¢))

=>

(retract 71 7£2)

(it (> 7p ?¢)

then

(bind ?pd (- ?p ?¢))
t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout
(printout
(printout
(printout
(printout
else
(bind ?cd
(printout
(printout
(printout
(printout
(printout

))

t " of parent activity " 7p3-name " is " ?pd " output(s) more " crlf)

t " than its child activities." crlt)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crlf)

(- 7c 7p))

t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
t " of the parent activity " ?p3-name " is " ?cd " output(s) less " crlf)
t " than its child boundary outputs." crif)

t " Are there ‘‘consists of’’ data items at boundary?" crlf)

t " Please recheck the syntax." crlf)

(defrule check-parent~3child-input
(declare (salience -6))
7f1<-(parent3-icom ?p3-name ? input ?p)
?7£2<-(child3-icom 7p3-name 7 input ?c)

(test (1= ?p 7¢))

=>

(retract 7f1 7£2)
(if (> 7p ?¢)

then

(bind 7pd (- 7p 7¢))

(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
(printout t "
(printout t "
(printout t "
(printout t "

else

{bind ?cd
(printout

of parent activity " ?p3-name " is " ?pd " input(s) more " crlf)
than its child activities.' crlf)

Are there ‘‘consists of’’ data items at boundary?" crlf)

Please recheck the syntax." crlf)

- 7¢c 7p))

t "WARNING, there might be an ERROR: The number of boundary inputs" cxlf)
(printout t "
(printout t "
(printout t "
(printout t "

of the parent activity " ?7p3-name " is " ?cd " input(s) less " crlf)
than its child boundary inputs." crlf)

Are there ‘‘consists of’’ data items at boundary?" crlf)

Please recheck the syntax." crlf)

C-24

))

(defrule check-parent-3child~mech
(declare (salience -6))
721<~-(parent3-icom ?p3-name ? mech ?p)
7£2<-(child3-icom ?p3-name ? mech ?c)
(test (= ?7p 7¢))
=>
(retract ?£1 7£2)
(it (> ?7p ?¢)

then

(bind ?pd (- ?p ?¢))

(printout t "WARNING, there might be an ERROR: The number of b.indary mechanisms" crlf)

(printout t " of parent activity " ?p3-name " is " ?pd " mechanism(s) more " crlf)
(printout t " than its child activities." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?” crlf)
(printout t * Please recheck the syntax." crlf)
else

(bind ?cd (- 7¢ 7p))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms” cxlf)
(printout t " of the parent activity " 7p3-name " is " ?cd " mechnaism(s) less " crlf)
(printout t " its child child boundary mechanisms." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t " Please recheck the syntax.'" crlf)

..

I R P N N R R N N N N N N
; This rule will create the boundary facts for activities having
; 4 child diagrams.

..

2222929399550 9213339 IIBININIINININ DRI NNININIIIBINDIINDIIINNNDNDYNDNY

(defrule parent-4child
(declare (salience 100))
?7pf1<- (act-has-child ?parent4 ?childi&"null)
?7pf2<~ (act-has~child ?parent4 ?child2&~?childi&~null)
7pt3<- (act-has-~child ?parent4 ?child3&"?child2&~?childi& null)
7pf4<~ (act-has~child ?parent4
?child4&~7¢hild3&~7child2%&"?child1& ™ null)
(not (act-has-child 7parent4
?child5&~7child4&”?child3%"?child2&~7child1& " null))
=
(retract ?pfl 7pf2 7pf3 ?pf4)
(assert (parent4 ?parent4 ?7childi ?child2 ?child3 7child4))
)

(defrule parent4-boundary
(parent4 ?parent4 ?childl ?child2 7child3 ?child4)
(icom-tuple ?parent4 ?p-data ?p-rel ?)
=
(assert (parent4-boundary ?parent4 7?p-data ?p-rel))

)

(defrule child4-boundary-childi
(parent4 ?parent4 ?childi ?7child2 ?child3 7child4)
(icom-tuple ?childl ?ci-data ?ci-rel ?)
=>
(assert (child4-boundary ?parent4 ?childi ?ci-data ?ci-rel))
)

(defrule child4-boundary-child2
(parent4 ?parent4 ?childl ?child2 ?child3 ?child4)
(icom-tuple ?child2 ?¢2-data ?c¢2-rel 7)
=>
(assert (child4-boundary ?parent4 ?child2 7c2-data ?c2-rel))
)

(defrule child4-boundary-child3
(parent4 ?parent4 7childl ?7child2 ?child3 ?child4)
(icom-tuple ?child3 ?c3-data ?c3-rel ?)
=>
(assert (child4-boundary ?parent4 ?child3 ?c¢3-data ?c3-rel))
)

(defrule child4-boundary-child4
{parent4 ?parent4 ?childl ?child2 ?child3 ?child4)
(icom-tuple ?child4 ?c4-data ?c4-rel ?)
=>
(assert (child4-boundary ?parent4 ?child4 7c4-data 7c4-rel))

..

IR NN SN e e E R NN SRR ENEEEE]
; These rules will clear the duplicated boundary facts in the facts

; created by the previous rule.

; CONDITION:

H 1. 3 activities out of 4 sharing a same data

; 2. 2 activities out of 4 sharing a same data

; 3. all 4 activities are sharing a same data

H element but with different icom code

; Condition 3 is not likely to happen, so it is not implemented

..

P2 PPN NN NN NSNS NN NN DINIDINIDNNIDNNDNINNDNIIIDNNNNININIDIDNYNIID

(defrule clear-4child-3mid
?f1<-(child4-boundary ?parent4 ?childl ?ci-data ?ci-rel)
?7£2<-(child4-boundary ?parent4 ?7child2&"?child1l ?ci-data ?c2-rel&”?cl-rel)
?7£3<-(child4-boundary 7parent4 ?child3&~7child2&?childl 7?ci-data
?¢3-rel&~7c2-rel& " 7?ci~rel)
=
(retract 7f1)

C-26

(retract 712)
(retract 713)
)

output and input of another two boxes. It must be removed before

H
; If a intermediate arrow is the input of one box but also the
H
; the arrow between the other boxes been removed.

R I I I R R R R R O R N R N N I .
I RN N R R RN R R R R EEE R R)

(defrule clear-4child-2mid-1
(child4-boundary ?paernt4 ?childi ?ci-data ?ci-rel)

(child4-boundary ?parent4 ?child2&"?childi ?ci-data ?c2-rel&~7cl-rel)

?£1<~ (child4-boundary ?parent4 ?child3&~?child2&~?childl ?ci-data ?¢c3-rel)

(test (or (eq ?c3-rel ?c2-rel)

(eq ?7c3-rel 7ci-rel)))

=>
(retract ?f1)
)

(defrule clear-4child-2mid
(declare (salience -1))

7£1<-(child4-boundary 7parent4 ?childi ?ci-data ?ci-rel)
?7f2<~(child4-boundary ?parent4 7child2&~?childi ?ci-data ?c2-rel&”?ci-rel)
=>
(retract 7£1)
(retract ?7£2)

--

230029202 DINSININNDNDIDINDNDNDIISDINNNIINSINDNININDDNDRNSNY

; Remove the duplicated boundary arrows for parents with
; with 4 child diagrams. Consider that at most 3 child
; out of 4 might use the same data.

--

IR RN R R N A I Ay I I I A B RO O

(defrule remove-4child-3boundary
{child4-boundary ?parent4 ?childl ?ci-data ?ci-rel)
7£2<~ (child4-boundary 7parent4 ?child2&”?childi 7ci-data ?cl-rel)
7£3<~ (child4-boundary ?parent4 ?c¢hild3&~7child2&~7childl ?ci-data ?ci-rel)
=>
{retract 7£2 713)
)

(defrule remove-4child-2boundary
(child4-boundary ?parent4 ?childl ?ci-data ?ci-rel)
?£2<~(child4-boundary 7parent4 ?child2&~?childl ?ci-data ?ci-rel)

=>
(retract ?7£2)
)

R R R R SRR R R R R R R R R R R R R R R
et rid of consists of intermedia

; This rule will
; that a data has
}

R ER]
IEEEEEEEEEEERENEEEE]

m-.
.e W
]
=
o
23
[]
3
g~
o
=
(]
=
<t
0
H -
[
ot}
8
ot
[os
(]
=
"]

.
-...-- . .
’

R R TR R A A R R R A R
(defrule rid-4child-3consists
?£1<-(child4~-boundary ?parent4 ?childl ?ci-data ?ci-rel)
?£2<~(child4~boundary ?parent4 ?child2k~?childl ?c2-datag~?ci-data 7c2-rel)
?£3<~(child4-boundary ?parent4 ?child3&"?child2&~?childl ?c3-data&~?c2-datak~?ci-data ?c3-rel)
7£4<-(child4-boundary ?parent4 ?child-p&~?child3&~?child2&~7child1
?cp-datak”7c3-datak”?¢2-datak”?ci-data ?cp-relk”?c3-rel&”7c2-rel&”?ci-rel)
(consists~of-name ? 7cp-data 7c3-data)
(consists-of-name ? ?cp-data ?7c2-data)
(consists-of-name ? ?7cp-data ?ci-data)
=
(retract ?7f1)
(retract 7£2)
(retract ?13)
(retract 7£4)
)

I A ST I ISR 3 Y 3 .
D”)””I"ll”"’l’l') H

R
; This rule should fired later than -3consists; since if
; 2 of 3 consists facts are retracted, the remaining one will not
; be matched to be retracted.

. '0-0
L L]

(defrule rid-4child-2consists
(declare (salience -1))
?7£1<-(child4-boundary ?parent4 7childil ?ci-data ?ci-rel)
7£2<-(child4-boundary ?parent4 7child2&~?childi ?c2-data&”?ci-data 7c2-rel)
7£3<-(child4-boundary ?parent4 ?child-p&~?child2&~7childl
?cp-data&”?c2-datak”?ci~data ?cp-rel&”?c2-rel&”7cl-rel)
(consists-of-name ? 7cp-data ?7c2-data)
(consists-of-name ? 7cp-data ?cl-data)
=>
(retract 7f1 7£2 7£3)

...

))))!”DD)))’)'l))))l’l)l!))))’))l’)’)”),,))))’P’))””!l)l’))”))’)”l)’l’!’
; This rule check a parent activity with 4 child diagram to see if

; there are any boundary data belonging to the parent but not a part of

; the child diagrams.

..

IR RN R N R T E R RN EEEE R R I I I A A A

(defrule check-4child-parent

C-28

(declare (salience -5))

(parent4-boundary ?p-name 7?p-data ?p-rel)

(not (consists-of-name ? ?p-data 7c-data))

(not (child4-boundary ?p-name 7child4 ?p-data ?c4-rel))
=>

(printout t "ERROR: Data inconsistency between parent activity
“?p-name " data ‘" ?p-rel "’ " ?p-data " and its child
diagrams." crlt)

(assert (syntax-error-occurred))

)

(detrule check-4child-parent-consists
(declare (salience -6))
(parent4-boundary ?p-name ?7p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (child4-boundary ?p-name 7child4 7c-data ?c4-rel))
=
(printout t "ERROR: Data inconsistency between parent activity
“?p-name " data ‘" ?p-rel "’ " 7p-data " and its child
diagrams." crlt)
(assert (syntax-error-occurred))

)

...

.
)’,l’)”'l”’,,),”il,,l)D”D””l”"l”’)D)’)l”'l’)”’),’)’)"

; This rule checks if a parent with 4 child diagrams that

; some of them have the same boundary data element but

; with different icom relation in contrast with their parent.
; Then it is an icom ERROR.

...

”",’"”))"”'Y”",))’,Dl)))l”"”)’l)"’,’"l)l!.)))"))"’

(defrule check-4child-icom
(declare (salience -5))
(parent4-boundary ?p-name ?p-data ?p-rel)
(child4-boundary ?p-name ?c-name 7p-data ?7c-rel)
(test (neq 7p-rel ?c-rel))
=
(printout t "ERROR: icom inconsistency between activity "
?7p—name " and its child diagram "
?c-name "." crlf)
(assert (syntax-error-occurred))

..

”,)l’)’}’))l’)”"l,l)l',))!"))’)l'l’l)Dl’,”D"”)",l’,’,l”l
; This rule checks if a parent have 4 child, and there is some

; boundary data element in the child diagrams

; but can’t find the same data in their parent then inconsistency
; happened.

..

’)'1)"P”))l))’)’l’)”P)’Dl)’))))!tl’))l)l’)’!’!ll)’))’))!l)ll’l

(defrule check-4child-child
(ceclare (salience -5))

(child4~-boundary 7p-name 7c-name ?c~data 7c-rel)

(not (consists-of-name ? ?p-data ?c-data))

wnot (parent4-boundary ?p-name ?c~data ?p-rel))

=
(printout t "ERROR: Data inconsistency between child activity
* ?c-name " data ‘" ?c-rel "’ " ?c-data " and its
parent." crlf)

(assert (syntax-error-occurred))

)

R R R R R R R R I R S N R N A A L I S S S
I RN R R R E R E R R N R E E R E R E E N EE RN E SR E R RN

H Parent with 4 child diagrams

H
; The initial icom number was build up by this rule,

...

2022392902933 9992999339333 9399532393592 322D IDNDIINIINIIIDNY

(defrule parent4-icom-c
(declare (salience -2))
(parent4-boundary ?p4-name ?p4-data c)
=>
(assert (parent4-icom ?p4-name ?7p4-data control 1))

)

(defrule parent4-icom-o
(declare (salience -2))
(parent4-boundary ?p4-name ?p4-data o)
=>
(assert (parent4-icom ?p4-name ?pé4~data output 1))

)

(defrule parent4-icom-i
(declare (salience -2))
(parent4-boundary ?p4-name ?pd-data i)
=>
(assert (parent4-icom ?p4-name ?p4-data input 1))

)

(defrule parent4-icom-m
(declare (salience -2))
(parent4-boundary 7p4-name ?p4-data m)
=>
(assert (parent4-icom ?p4-name ?p4-data mech 1))

)

(defrule parent4-control-add
(declare (salience -3))
?7f1<-(parent4-icom ?p4-name ?datal control ?one)
?7£2<-(parent4-icom ?p4-name ?data2 control ?n)
(test (neq 7datail ?data2))

C-30

=>

(retract 7£1 ?7£2)

(bind ?total (+ Zone 7n))

(assert (parent4-icom ?p4-name =(gensym) control ?total))

)

.
1

(defrule parent4-output-add
(declare (salience -3))
?t1<-(parent4-icom ?p4-name ?datal output ?one)
7£2<-(parent4-icom ?p4-name 7data2 output 7n)
(test (neq 7datal 7data2))
=
(retract 7fi 7£2)
(bind 7total (+ ?one 7n))
(assert (parent4-icom ?p4-name =(gensym) output ?total))

)

(defrule parent4-input-add
(declare (salience -3))
?7ti<-(parent4-icom ?p4-name ?datal input ?one)
?7£2<-(parent4-icom ?p4-name ?data2 input 7n)
(test (neq 7datal 7data2))
=
(retract ?7f1 712)
(bind 7total (+ ?7one 7n))
(assert (parent4-icom ?p4-name =(gensym) input ?total))

)

(defrule parent4-mech-add
(declare (salience -3))
?7f1<-(parent4-icom 7p4-name ?datal ?mech 7one)
7f2<-(parent4-icom ?p4-name 7data2 ?mech ?n)
(test (neq 7datail ?data?2))
=>
(retract 7f1 7£2)
(bind 7total (+ 7one 7n))
(assert (parent4-icom ?p4-name =(gensym) mech ?total))

(defrule child4-icom-c
(declare (salience -2))
(child4-boundary ?c4~parent 7c4-name ?c4-data c)

=>
(assert (child4-icom ?c4-parent ?c4-data control 1))

)

(defrule child4-icom-o
(declase (salience -2))
(child4-boundary ?c4-parent ?c4-name ?c4-data o)
=>
(assert (child4-icom ?c4-parent ?c4-data output 1))

)

(defrule child4-icom-i
(declare (salience -2))
(child4-boundary ?c4-parent ?cs4 -name ?c4-data i)
=>
(assert (child4-icom ?c4-parent ?c4-data input 1))

)

(defrule child4-icom-m
(declare (salience -2))
(child4-boundary ?c4-parent ?c4-name ?c4-data m)
=>
(assert {child4-icom ?c4-parent ?c4-data mech 1))

)

.
»

(defrule child4-control-add
(declare (salience -3))
?7£1<-(child4-icom 7c4-parent ?datal control Zone)
7£2<-(child4-icom ?c4-parent ?data2 control 7n)
(test (neq ?datal ?data2))
=>
(retract 7f1 7£2)
(bind 7total (+ Zone 7n))
(assert (child4-icom ?c4-parent =(gensym) contrel ?total))

’

(defrule child4-output-add
(declare (salience -3))
7£1<-(child4-icom ?c4-parent ?datal output Zone)
7£2<-(child4-icom ?c4-parent 7data2 output 7n)
(test (neq 7datal ?data2))
=>
(retract 7f1 7£2)
(bind ?total (+ Zone 7n))
(assert (child4-icom ?c4-parent =(gensym) output ?total))

.
1

(defrule child4-input-add
(declare (salience -3))
?7£1<-(child4~icom ?c4-parent ?datai input ?one)
?7#2<-(child4-icom ?c4-parent ?data2 input ?n)
(test (neq ?datal ?data2))
=>
(retract 7£1 7£2)
(bind ?total (+ ?7one ?n))
(assert (child4~icom ?c4-parent =(gensym) input ?total))

)

(defrule child4-mech-add
(declare (salience -3))
?11<~(child4-icom ?7c4-parent ?datal mech ?one)
?£2<-(child4-icom ?c4-parent ?data2 mech 7n)
(test (neq ?datal ?data2))
=>
(retract 7f1 7£2)
(bind ?total (+ ?one 7n))
(assert (child4~icom ?c4-parent =(gensym) mech ?total))

)

;Ao ok ok ok ok ook ok ok kR ok ok Aok Kok o doRok ok ok ok ok stok ok Aok Rk Aok ok sk sk ok ok ook
) Check Parent with 4 child boundary icom number consistancy

(defrule check-parent-4child-control
(declare (salience -6))
?f1<~(parent4-icom ?p4-name ? control ?p)
7£2<-(child4-icom 7p4-name ? control ?c¢)
(test (!= ?p 7¢))
=>
(retract 71 7£2)

(if (> ?7p ?¢)

then

(bind 7pd (- 7p 7¢))

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of parent activity "7p4-name" is "7pd" control(s) more than " crlf)
(printout t " its child activities." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?ed (~ ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of the parent activity "?p4-name" is "7cd" control(s) less " crlf)
(printout t " than its child boundary controls." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-4child-output
(declare (salience -€))
?7f1<~(parent4-icom ?p4-name ? output ?p)
?£2<-(child4-icom ?p4-name ? output ?c)
(test (1= ?7p 7¢))
=>
(retract 71 ?£2)

(if (> ?7p ?¢)

then

(bind ?pd (- ?p ?¢))

(printout t "WARNING, there might be an ERROR: The number of boundary outputs” crlf)

(printout t " of parent activity " 7p4-name " is " ?pd " output(s) more * crlf)
(printout t " than its child activities." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

else

(bind ?ed (- 7c 7p))

(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t " of the parent activity " ?p4-name " is " Zcd " output(s) less " crlf)
(printout t " than its child boundary outputs." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-4child-input
(declare (salience -6))
?f1<-(parent4-icom ?p4-name ? input ?p)
?£2<~(child4-icom ?p4-name ? input ?c)
(test (1= ?p ?¢))
=>
(retract 7f1 712)

(if (> ?7p ?¢)
then
(bind 7pd (- ?p 7¢))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " ot parent activity " ?p4-name " is " 7pd " input(s) more " crlf)
(printout t " than its child activities." crlf)
P
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
P y
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c 7p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
(printout t " of the parent activity " ?p4-name " is " ?cd " input(s) less " crlf)

C-34

(printout
(printout
(printout

))

t "
t "
t "

than its child boundary inputs.' crlf)
Are there ‘‘consists of’’ data items at boundary?" crlf)
Please recheck the syntax." crlf)

(defrule check-parent-4child-mech
(declare (salience -6))

7£1<~(parent4-icom ?p4-name ? mech ?p)
7£2<-(child4-icom ?p4-name ? mech ?c)
(test (!= ?p 7¢))

=>

(retract ?f1 7£2)

(if > 7p ?¢)

then

))

(bind ?pd (-~ 7p 7¢))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of parent activity " ?p4-name " is " ?pd " mechanism(s) more " crlf)
(printout t " than its child activities." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c 7p))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)
(printout t " of the parent activity " ?p4-name " is " ?cd " mechnaism(s) less " crlf)
(printout t " its child child boundary mechanisms.' crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

..

B EEEEE R e R R RN IR

; This rule will create the boundary facts for activities having
; 5 child diagrams.

..

22D INDINNNDIDNNN NN EIINSNIINNNNIEENNIIINNNNES NN

(defrule parent-5child
(declare (salience 100))
7f1<-(act~has~child ?parent§ ?child1& null)
?7£2<-(act-has-child ?parent5 7child2& ?childi& null)
?7f3<-(act-has-child ?parent5 ?7child3&~7child2& ?child1& " null)
?7£4<~(act~has-child ?parents

?ch11d4&~7child3& " ?child2&~7childi& null)

?7£5<-(act-has-child ?parent5
7¢child5&~?c¢hild4&"7¢hild3%"7child2%~7child1& " null)
(not (act-has-child 7parent5

?¢hild6&~?child5&~?child4&~?child3&~?child2&~?child1i&"null))
=>
(retract ?f1 7£f2 ?f3 ?f4 ?f5)
(assert (parent5 ?parent5 ?7childl ?child2 ?child3 ?child4 ?childb))
)

(defrule parent5-boundary
(parent5 ?7parent5 ?7childi ?child2 ?child3 ?child4 ?child5)
(icom-tuple ?parent5 ?p-data ?p-rel ?)
=>
(assert (parentb5-boundary ?parents 7p-data 7p-rel))

)

(defrule child5-boundary-childi
(parent5 ?parent5 ?childl ?child2 ?child3 ?child4 ?childs)
(icom-tuple ?childl ?ci-data ?cl-rel ?)
=>
(assert (child5-boundary ?parent5 ?childl ?ci-data ?ci-rel))
)

(defrule child5-boundary-child2
(parent5 7parent5 7childl ?child2 ?child3 ?child4 ?7childs)
(icom-tuple ?child2 ?c2-data ?c2-rel ?)
=>
(assert (child5-boundary 7parent5 7child2 ?c2-data 7c2-rel))
)

(defrule child5-boundary-child3
(parent5 ?7parent5 ?childi ?7child2 ?child3 ?child4 ?child5)
(icom-tuple ?child3 ?c3-data ?c3-rel ?)
=>
(assert (child5-boundary ?parent5 ?7child3 7c3-data ?7c3-rel))
)

(defrule child5-boundary-child4
(parent5 ?parent5 7childi ?child2 ?child3 .child4 ?childs)
(icom-tuple ?child4 ?c4-data 7cé4-rel ?)
=>
(assert (child5-boundary ?parentd 7child4 7c4-data ?c4-rel))
)

(defrule childb5-boundary-childs
(parent5 7parent5 ?childl ?child2 ?child3 ?child4 ?7child5)
(icom-tuple ?childs ?c5-data ?c5-rel ?)
=>
(assert (childS5-boundary 7parent5 7childS 7?c5-data 7c¢b5-rel))

..

29203332 F 22PN IS I I I NI NSNS I NN NI

C-36

These ruler will clear the duplicated boundary facts in the facts
; created by the previous rule.
; CONDITION:
H 1. 4 activities out of & sharing a same data
; 2. 3 activities out of 5 shaving a same data

3. 2 activities out of 5 sharing a same data

4. all 6 activities are sharing a same data

element but with different icom code

Condition 1 and 4 is not likely to happen, so it is not implemented

ws we wa

R R R R N N A A S A A R A A P AT S S AP I ST S S TSP S ST S S ST PSP ST S
325323395352)!,D’),IJ,,),”l’l),’,))))’!,,,”,”,,,’)l”,”’lll”’)D’

e we we

(defrule clear-5child-3mid

?7£1<-(childS-boundary ?parents ?childl ?ci-data ?ci-rel)
7£2<-(childb-boundary ?parent5 7child2&~7childi ?ci-data ?7c2-rel& ?ci-rel)
?£3<-(child5-boundary ?parent5 ?child3&~?child2&"?childi ?ci-data

7¢3-rel&”7c2-rel&~?ci-rel)

=>
(retract 7£1)
(retract ?7£2)
(retract 71£3)

.................. R .

”))’,))))))3)’)’1’!!)””’:)!l’)"!”’l”,”)’;;;;;;;;;;;;;;;;;;;;
; If a intermediate arrow is the input of one box but also the

; output and input of another two boxes. It must be removed before
H

the arrow between the other boxes been removed.

.................. R EE RN

. R R X
))”0)”)”’)”’))””!1,))’I)’l’)!”’)”)’1”1)”!”’),,”,)D’,’)l

(defrule clear-5child-2mid-1

(child5-boundary ?paernt5 ?childi ?ci-data ?ci-rel)

(child5-boundary 7parent5 ?7child2&~?childl ?cil~-data 7c2-rel&~?ci-rel)

7£1<~- (child5-boundary ?parent5 ?child3&~?child2&~?childi ?ci-data 7c3-rel)

(test (or (eq ?c3-rel 7¢c2-rel)

(eq 7c¢3-rel 7ci-rel)))

=>
(retract 7f1)
)

(defrule clear-5child-2mid

(declare (salience -1))
?7£1<-(child5-boundary ?parent5 7childi ?ci-data ?cl-rel)
7£2<-(child5-boundary ?parent5 ?child2&~7childl ?ci-data ?c2-rel& ?ci-rel)
=
(retract ?f1)
(retract 7£2)

2233303993909 2233333222 IIIIIIINNNIIIDIDIDININIINIDINDINNDNDINY

C-37

; Remove the duplicated boundary arrows for parents with
; with 5 child diagrams. Consider that at most 3 child
; out of 5 might use the same data.

...

ll’I")l””lll""”)"’J’l’)l””"’ll"))))!l”)’ll”)

(deirule remove-5child~3boundary
(childs-boundary 7parents ?childl ?ci-data ?ci-rel)
?7£2<~ (childb-boundary ?parent5 ?child2&~7childl 7ci-data ?ci-rel)
7£3<~- (childb-boundary ?parent5 ?child3&~?c¢hild2&~?childl ?ci-data ?ci-rel)
=>
(retract ?£2 ?£3)
)

(defrule remove~5child-2boundary ‘
(child6-boundary 7paxents ?childil ?ci-data 7cl-rel)
7£2<-(child5-boundary ?parent5 ?child2&~?childi ?ci-data ?ci-rel)
=> |
(retract 71£2) }
) |

(defrule rid-5child-3consists
?7£1<~(child5-boundary ?parent5 ?childl ?ci-data ?ci-rel)
7£2<-(childb-boundary ?parent5 ?child2&~?childi ?¢2-data&~7ci-data 7c2-rel)
7£3<-(child5-boundary ?parent5 ?child3&~?child2&~?childt
?c¢3-datak”?c2-datak”?cl-data 7c3-rel)
?7£4<~(childs-boundary ?parent5 ?child-p%~?child3%~?child2&” ?childl
?cp-data&”?c3-datak”?c2-datak”7ci-data ?cp-rel&"?c3-rel&”?c2-rel&"?ci-rel)
(consists-of~name ? ?cp-data ?7c3-data)
(consists-of-name ? ?cp-data 7c2-data)
(consists-of-name 7 ?cp-data ?ci-data)
=>
(retract 7f£1)
(retract 7£2)
(retract 7£3)
(retract 7£4)
)

(defrule rid-5child-2consists
(declare (salience -1))
?7f1<-(child5-boundary ?parent5 7childi ?ci-data 7ci-rel)
7£2<-{child5-boundary 7parent5 7child2&~7childi 7c2-data%&~?ci-data ?c2-rel)
7£3<-(child5-boundary ?parent5 7child-p&~?child2&~?childi ?cp-datak~?c2-datak”?ci-data
7cp-rel&”7c2-rel&”7ci-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?ci-data)
=>
(retract ?f1 7£2 ?7£3)

..

2992303323333 3353322339223 2 3233933333 ,33%33 3992253339333 3333833593323 3 9393

; This rule check a parent activity with 5 child diagram to see if

; there are any boundary data belonging to the parent but not a part of
; the child diagrams.

i

AR R R R R E R ..
P3P IIDIDNDIDNIDNINININDINNIDNNY

R N R
(defrule check~5child-parent
(declare (salience -5))
(parent5-boundary ?p-name ?p-data ?p-rel)
(not (consists-of-name ? ?p~data ?c-data))
(not (childs-boundary ?p-name ?childS ?p-data ?c5-rel))
=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ " ?p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

)

(defrule check-5child-parent-consists
(declare (salience -6))
(parent5-boundary ?p-name ?p~data ?p-rel)
(consists~of-name ? ?p-~data ?c-data)
(not (child5-boundary 7p~name ?childs ?c-data ?c5-rel))
=
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ " ?7p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

)

; This rule checks if a parent with & child diagrams that

; some of them have the same boundary data element but

; with different icom relation in contrast with their parent.
; Then it is an icom ERROR.

.................. ©0 6 6 ¢ 0 0 8 6 s e s s e e m 6L e e s se s st e s e S
)’"””,))"l))”)’,’)l)”)”)))’””"”,’l,’,)l,))))')”’)),lﬁ

(defrule check~5child-icom
(declare (salience -5))
(parent5-boundary ?p-name 7p-data 7p-rel)
(child5-boundary ?p-name ?c-name 7p-data ?c-rel)
(test (neq ?p-rel 7c-rel))

=>

(printout t "ERROR: icom inconsistency between activity "
7p-name " and its child diagram " 7c-name "." crlf)
(assert (syntax-error-occurred))

)

..

)"”’ll))))11)”'17”’))’)l)’),)l”’D")’11”’))!”)!!)’)!’11',!

; This rule checks if a parent have 5 child, and there is some

; boundary data element in the child diagrams

; but can’t find the same data in their parent then inconsistency
H

H

(defrule check-5child-child

(declare (salience -5))

(childs-boundary ?p-name ?c-name ?c-~data 7c-rel)

(not (consists-of-name ? ?p-data ?c-data))

(not (parent5-boundary ?p-name ?c-data ?p-rel))

=
(printout t "ERROR: Data inconsistency between child activity
" ?¢-name " data ‘" 7¢-rel "’ " ?¢-data " and its
parent." crlf)

(assert (syntax-error-occurred))

)

...

,)’)l,,’)),)l)))iil’,))’)))))))l))”)l.)))),D))!)’b)’)l)bl))l)),’)li),’Il’l,’

Parent with 5 child diagrams

)
; The initial icom number was build up by this rule,

(defrule parent5-icom-c
(declare (salience -2))
(parent5-boundary ?p5-name ?pb~-data c)
=>
(assert (parentb-icom 7pS-name 7p5-data control 1))

)

(defrule parent5-icom-o
(declare (salience -2))
(parent6-boundary ?p5-name ?p5-data o)
=>
(assert (parentS5-icom ?p5-name ?pS-data output 1))

)

(defrule parentS-icom-i
(declare (salience -2))
(parent5-boundary ?p5-name ?p5-data i)
=>
(assert (parent5-icom ?p5-name ?p5-data input 1))

)

(defrule parent5-icom-m
(declare (salience -2))
(parent5-boundary ?p5-name ?p5-data m)
=>
(assert (parent5-icom ?p5-name 7p5-data mech 1))

C-40

(defrule parentS-control-add
(declare (salience ~3))
?f1<-(parentb-icom ?p5-name ?datal control ?one)
7£2<-(parent5-icom ?p5-name ?data2 control 7n)
(test (neq ?datal ?data2))
=>
(retract 7f1 ?£2)
(bind ?total (+ ?7one ?n))
(assert (parent5-icom ?p5-name =(gensym) control ?7total))

)

H [

(defrule parentb-output-add
(declare (salience -3))
?f1<~(parent5-icom 7p5-name ?datal output ?7one)
7£2<-(parent5-icom ?p5-name 7data2 output ?n)
(test (neq 7datal ?data2))
=>
(retract 7f1 ?712)
(bind ?7total (+ ?one ?n))
(assert (parentS-icom ?p5-name =(gensym) output ?total))

)

(defrule parent5-input-add
(declare (salience -3))
?fi<-(parent5-icom 7p5-name ?datal input ?one)
?7f2<-(parent5-icom 7p5-name 7data2 input 7n)
(test (neq ?datai ?data2))
=>
(retract ?f1 7£2)
(bind ?7total (+ 7one 7n))
(assert (parentS5-icom ?p5-name =(gensym) input ?total))

)

(defrule parent5-mech-add
(declare (salience -3))
?7£1<~(parentS-icom ?pS-name ?datai mech ?Zone)
?7f2<~(parent5-icom ?pS5-name ?data2 mech 7n)
(test (neq ?datal ?data2))
=>
(retract ?7f1 7£2)
(bind ?total (+ Zone ?n))

C-41

(assert (paventb-icom ?p5-name =(gensym) mech ?total))

)

(defrule childb-icom-c
(declare (salience -2))
(childs-boundary ?cb-parent ?pS-name ?cS-data c)
=>
(assert (childS-icom ?c6-parent ?cb-data control 1))

)

(defrule childs~icom-o
(declare (salience ~2))
(child5-boundary ?c5-parent ?c5-name ?cb-data o)
=>
(assert (child5-icom ?cS5-parent ?c5-data output 1))

)

(defrule childs-icom-i
(declare (salience -2))
(child5-boundary ?c5-parent 7c5-name ?c5-data i)
=>
(assert (childS5-icom ?7cb-parent ?cb-data input 1))

)

(detrule childs-icom-m
(declare (salience -2))
(child5-boundary ?c5-parent ?c5-name ?c5-data m)
=>
(assert (childS-icom 7c5-parent 7c5-data mech 1))

(defrule child5-control-add
(declare (salience -3))
?7f1<~(childs~icom ?c5-parent ?datal control ?7one)
7£#2<~(child5~icom ?c5-parent ?data2 control 7n)
(test (neq ?7datai 7data2))
=
(retract 7£f1 7£2)
(bind ?total (+ 7one 7n))
(assert (childs-icom 7c¢5-parent =(gensym) control ?total))

.
’

(defrule child5-output-add

C-42

(declare (salience -3))

?£1<-(childb~icom ?cb~parent ?datal output ?one)
7#2<-(child6-icom 7cb~parent ?data2 output ?n)

(test (neq ?datal ?data2))

=>

(retract 7£1 7£2)

(bind 7total (+ %one 7n))

(assert (childS-icom ?c5-parent =(gensym) output ?total))
)

(defrule childé-input-add
(declare (salience -3))
7#1<~(child5-icom 7cb-parent 7datal input Zone)
?7£2<~(childb-icom ?c5-parent 7data2 input 7n)
(test (neq ?datal 7data2))
=>
(retract ?£1 712)
(bind ?total (+ ?one 7n))
(assert (childs-icom ?c5~parent =(gensym) input 7total))

)

(defrule childS-mech-add

(declare (salience -3))

?£1<~(child5-icom ?c5-parent ?datal mech 7one)

7£2<-(childb-icom ?c5 -parent ?data2 mech 7n)

(test (neq 7datal 7data2))

=>

(retract ?fi 7£2)

(bind ?total (+ Zone ?7n))

(assert (child5-icom ?c5-parent =(gensym) mech 7total))

)
§ RO AR KA OR R KK 3K R KRR AR ok K ko o ko ok
; Check Parent with 5 child boundary icom number consistancy

(defrule check-parent-5child-control
(declare (salience -6))
(parentS5-icom ?p5-name ? control 7p)
(child5-icom ?p5-name ? control ?c)
(test (1= ?p 7¢))
=>

(if (> ?p 7¢)

then
(bind ?pd (- ?p 7c))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t " of parent activity "?pS-name" is "?pd" control(s) more taan " crlf)
(printout t " its child activities.” crlf)

Jprintout t " Are there ‘‘consists of’’ data items at boundary?" crilt)
(printout t " Please recheck the syntax." crlf)
else
(bind ?cd (- ?7¢ ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t " of the parent activity "?p5-name" is "7cd" control(s) less " crlf)
(printout t " than its child boundary controls." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-5child-output
(declare (salience -6))
(parentS5-icom ?p5-name ? output ?p)
(child5-icom ?pS-name ? output ?c)
(test (1= ?7p 7¢))
=>
(if (> ?p ?¢)
then
(bind ?pd (- ?p 7¢))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of parent activity " ?p5-name " is " ?pd " output(s) more * crlf)
(printout t " than its child activities." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c 7p))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs” crlf)

(printout t " of the parent activity " ?pS-name " is " ?c¢d " output(s) less " crlf)
(printout t " than its child boundary outputs." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-5child-input
(declare (salience -6))
(parent5-icom ?pS-name ? input ?p)
(child5-icom ?pb-name ? input ?c¢)
(test (1= 7p 7¢))
=>
(if (> 7p 7¢)
then
(bind ?pd (- ?7p ?¢))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs' cxlf)

(printout t " of parent activity " ?pB-name " is " ?pd " input(s) more ™ crlf)
(printout t " than its child activities." crlf)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crilf)
(printout t " Please recheck the syntax." crlf)

C-44

else
(bind ?ecd (- 7¢c 7p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
(printout t " of the parent activity " ?p5-name " is " 7ed " input(s) less " crlf)
(printout t " than its child boundary inputs."' crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

))

(defrule check-parent-5child-mech
(declare (salience -6))
(parent5-icom ?pS-name ? mech ?p)
(childE~-icom ?p5-name ? mech 7c)
(test (1= 7p 7c¢))
=
(if (> ?p 7¢)
then
(bind ?pd (- ?p 7¢))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of parent activity " ?p5-name " is " ?pd " mechanism(s) more " cxrlf)
(printout t " than its child activities." crlf)
(printout t * Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms” crlf)

(printout t " of the parent activity " ?pS-name " is " ?cd " mechnaism(s) less " cxlf)
(printout t " its child child boundary mechanisms." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." c¢rlf)
))

..

333593393 953323523 IDIN I NINNNINNIDIDIDNINNNINNNSDNINDINNDNSDNDNSNDNDIDINDIYD

; This rule will create the boundary facts for activities having
; 6 child diagrams.

..

3939999533993 3539933339332 33332533333333323 3333299339339 33233)

(defrule parent-6child
(declare (salience 100))
?7f1<-(act-has-child ?parent6 ?7ch1ldi&"null)
?7£2<-(act-has-child ?parent6 ?child2&~?childi&"null)
7f3<-(act-has-child 7parent6 ?child3&”?child2&~7childi&"null)
7f4<-(act-has-child ?parent6é
?7child4&~7child3&"?child2&”?chi1ld1&"null)
?{5<-(act-has~child 7parent6
?child5&~?child4&~7¢child3&~?child2&” 7child1&"null)
?716<-(act-has-chi1ld ?parent6

?child6&”7child5&~?child4&”?child3&~?child2&"~?child1&"null)
(not (act-has-child ?parent6
7¢hild7&~7child6&~7childb&~ 7child4&~7child3&~7child2&” 7childi1& null))

=>
(retract ?7f1 ?f2 7f3 7f4 7f5 ?7£6)
(assert (parent6 7parent6 ?childl ?child2 ?child3 ?child4
?child5 ?childe))
)

(defrule parent6-boundary
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?7childb ?7childé)
(icom-tuple ?parent6 7p-data ?p-rel ?)
=
(assert (parent6-boundary ?parent6 7p-data ?p-rel))
)

(defrule childé-boundary-childi
(parent6 ?parent6 7childi ?child2 ?child3 ?child4 ?childS ?childe)
(icom-tuple ?childi 7ci-data ?ci-rel ?7)
=>
(assert (child6-boundary ?parent6é 7childl ?ci-data ?ci-rel))
)

(defrule child6-boundary-child2
(parent6 ?parent6 ?childi ?child2 ?c¢hild3 ?child4 ?child5 ?childs)
(icom-tuple ?child2 ?7c2-data 7c2-rel 7)
=
(assert (child6-boundary ?parent6 7child2 ?c2-data ?c¢2-rel))
)

(defrule childé-boundary-child3
(parent6 ?parent6 ?childi ?child2 ?child3 ?child4 ?child5 ?7childs)
(icom-tuple ?child3 7c¢3-data 7c¢3-rel 7)
=>
(assert (child6-boundary ?parent6 ?child3 ?c3-data ?¢3-rel))
)

(defrule child6~-boundary-child4
(parent6 ?parent6 7childl ?child2 ?child3 ?child4 ?7childb ?childs)
(icom-tuple ?child4 ?c4-data 7cé4~-rel 7)
=>
(assert (childé-boundary ?parent6 ?child4 ?c4-data ?c4-rel))
)

(defrule child6é-boundary-childs
(parent6 7parent6 7childi ?child2 ?¢hild3 ?child4 ?childs ?childs)
(1com-tuple ?child5 7c5-data 7¢5-rel 7)
=>
(assert (child6-boundary ?parentf ?child5 7?c5-data ?c5-rel))

C-46

)

(defrule child6-boundary-childé
(parent6 7parent6 ?childil ?child2 ?child3 ?child4 ?child5 ?childs6)
(icom-tuple ?child6 ?c6-data ?c6-rel ?)
=>
(assert (child6~boundary ?parent6 ?childé ?c6-data ?c6-rel))
)

-

H) ’ ’

; These rules will clear the dupllcated bcundary facts in
; created by the previous rule.
; CONDITION:
1. 5 activities out of 6 sharing a same data

2. 4 activities out of 6 sharing a same data

3. 3 activities out of 6 sharing a same data
: 4. 2 activities out c¢f 6 sharing a same data

5. all 6 activities are sharing a same data
; element but with different icom code

; Condition 1 and 5 is not likely to happen, so it is not implemented

.e we we

..

’l’!”)’))l'})!’),’))1”))’))”)')’)I’l))l)))D)”")!]’)’)J”’))!”’J’

(defrule clear-6child-4mid
7f1<~-(child6-boundary ?parent6 ?childl ?ci-data ?cl-rel)

7£2<~(child6-boundary ?parent6 ?child2&~7childl 7?ci-data ?¢2-rel&”?ci-rel)

?7£3<-(child6-boundary ?parent6 ?7child3&~?child2&"?childl 7?ci-data
?7c3-rel&”7c2-rel&”?cl-rel)

7£4<-(child6-boundary ?parent6é ?child4&~?child3&”?child2&~7childl Zci-data 7céd~-.<l)

(test (or (and (neq ?c4-rel ?cl-rel)
(neq ?c4-rel ?c2-rel)
(eq 7c4-rel ?c3-rel})
(and (eq 7c4-rel 7ci-rel)
(neq ?c4-rel ?c2-rel)
(neq 7cé4-rel ?c3-rel))
(and (neq ?7c4-rel ?ci-rel)
(eq ?c4-rel 7c2-rel)
(neq ?c4-rel 7c3-rel))))
=>
(retract 7£1)
(retract 7£2)
(retract ?7f3)
(retract 7f4)
)

(defrule clear-6¢child-3mid
7£1<-(child6~boundary ?parent6 ?childi 7ci-data 7ci-rel)

7€2<-(child6-boundary ?parent6 ?child2&~?childl 7ci-data 7c2-rel&~?cl-rel)

?13<—(child6-boundary ?parent6 ?child3%&~7child2%&”?childl 7ci-data
7¢3-rel&”7c2-rel&"?cl-rel)

=>

(retract 7f1)

(retract 7£2)

(retract ?7£3)

)

................

; If a intermediate arrow is the input of one box but also the
; output and input of another two boxes. It must be removed before
; the arrow between the other boxes been removed.

........................

(defrule clear-6child-2mid-1
(child6-boundary ?parent6 ?childi ?ci-data 7cl-rel)
(childé-boundary 7parent6é ?7child2&~7childl ?ci-data 7c2-rel&”7ci-rel)
7£1<~ (childé-boundary ?parent6 ?child3&~?7child2&~?childl ?ci-data ?c3-rel)
(test (or (eq ?c3-rel ?¢c2-rel)
(eq ?c3-rel ?ci-rel)))
=>
(retract ?f1)
)

(defrule clear-6child-2mid

(declare (salience -1))
?7f1<-(child6-boundary ?parent6 7childi 7ci-data ?ci-rel)
7£2<~(child6-boundary ?parent6 ?child2&~?childl ?ci-data ?c2-rel&”7ci-rel)
=>
(retract 7f1)
(retract 7£2)
)

(defrule remove-6child-4boundary
(child6-boundary 7parent6 ?childl ?ci~data ?ci-rel)
7£2<- (childé-boundary ?parent6 ?child2&~?childi ?ci-data ?7ci-rel)
?7£3<~ (child6-boundary ?parent6 ?child3&~?child2&~7childi 7ci-data 7ci-rel)
7f4<- (child6-boundary ?parent6 7child4&~?child3&~?child2&~?childl ?ci-data 7cl-rel)
=>
(retract 72 7£f3 7£f4)
)

(defrule remove-6child-3boundary
(child6-boundary ?parent6 7childi ?ci-data ?ci-rel)
?7£2<~ (childé-boundary ?parent€é ?child2&~?childl ?ci-~data 7ci-rel)

C-48

7£3<~ (child6-boundary ?parent6 ?child3%&~?child2&~?childl ?ci-data ?ci-rel)
=>

(retract 7£2 7£3)

)

(defrule remove-6child-2boundary
(childé~boundary ?parent6 ?childi ?ci-data ?ci-rel)
?7£2<-(child6-boundary ?parent6 ?child2&~?childi ?ci-data ?ci-rel)
=>
(retract 7£2)
)

»
(defrule rid-6child-3consists
?£1<~(child6-boundary ?parent6 ?childl ?ci-data ?ci-rel)
?£2<~(child6-boundary ?parent6 ?child2&~?childl ?c¢2-data&~7ci-data ?c2-rel)
?7£3<-(child6-boundary ?7parent6 ?child3&~7child2&~?childi
7c3-2:-ta&”7c2-data&”?ci-data 7c¢3-rel)
7£4<-(child6-boundary ?parent6é ?child-p&~?child3&~7child2&"7child1
?cp-data&”?c3-datak”?c¢2-datag”?ci-data ?cp-rel&”?c3-rel&”?c2-rel&7ci-rel)
(consists-of-name ? ?cp-data ?c3-data)
(consists-of~-name ? ?7cp-data ?c2-data)
(consists-of-name ? 7cp-data ?ci-data)
=
(retract 7£1)
(retract 712)
(retract 7£3)
(retract 714)
)

(defrule rid-6child-2consists
(declare (salience -1))
?7£1<-(child6-boundary ?parent6 7childi ?ci-data ?ci-rel)
7£2<~(child6-boundary ?7parent6 7child2&~7childl 7c2-data&~?ci-data ?c2-rel)
?£3<-(child6-boundary ?parent6 ?child-p&~?child2&~?7childl
?cp-data&~?c2-data&”7cl-data ?cp-rel&~7c2-rel&”7ci-rel)
(consists-of-name ? ?cp-data 7c¢2-data)
(consists-of-name ? ?7cp-data 7ci-data)
=>
(retract 7f1 7£2 7£3)

..

322992 593022933333 NIN NN DIINS NN NNDINSDNI SN NNIIISENIIEISNYINSNIINY
; This rule check a parent activity with 6 child diagram to see if

; there are any boundary data belonging to the parent but not a part of

; the child diagrams.

--

IR R RN R e R B E RN E TR RN RN R

C-49

(defrule check-6child~parent
(declare (salience -5))
(parent6-boundary ?p-name 7?p-data ?p-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (child6-boundary ?p-name ?childé ?p-data 7c6-rel))
=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ ' ?p-data " and its child
diagrams." crlf)
(assert (syntax~error-occurred))

)

(defrule check-6child-parent-consists
(declare (salience -6))
(parent6-boundary ?p-name 7p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (childé-boundary ?p-name ?childé ?c-data 7c6-rel))
=>
(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data ‘" ?p-rel "’ " 7p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))

)

IEEEX]
’”’”)”,))"),’!’”))’J,’,””,,’,”l,’)!’)’DD”)’)IY")))))")

; This rule checks if a parent with 6 child diagrams that

; some of them have the same boundary data element but

; with different icom relation in contrast with their parent.
; Then it is an icom ERROR.

..

”,!’)’D”,”",,’!”,”l)Dl)l,I”l”ll’))”)"l)l”ll”l’)’))"!

(defrule check-6child-icom
(declare (salience -5))
(parent6-boundary ?p~name 7p-data ?p-rel)
(child6-boundary ?p-name ?c-name ?p-data ?c-rel)
(test (neq 7p-rel 7c-rel))
=>
(printout t "ERROR: icom inconsistency between activity "
?p-name " and its child diagram "

?c~name "." crlf)
(assert (syntax-error-occurred))
)

...

tEE NS EENEEEEE SN EEENEEE NS N EEENEEREEEEEEEEEEEEE N EEEEEE RN
; This rule checks if a parent have 6 child, and there is some

; boundary data element in the child diagrams

; but can’t find the same data in their parent, then inconsistency
; happened.

...

IE RN R N R I I I I I R I A I A 2 B IS O 4

C-50

(defrule check-6child-child

(declare (salience -5))

(child6-boundary ?p-name ?c-name ?c-data ?c-rel)

(not (consists-of-name 7 ?p-data ?c~data))

(not (parent6é-boundary ?p~name ?c-data ?p-rel))

=>
(printout ¢ "ERROR: Data inconsistency between child activity
" ?c¢c-name " data ‘" ?c-rel "’ " ?c-data " and its
parent." crltf)

(assert (syntax-error-occurred))

IR R R R R R N R RN RN R R R

H Parent with 6 child diagrams

H
; The initial icom number was build up by this rule,

...

IR N N N N R R NN N EEE R R

(defrule parent6-icom-c
(declare (salience -2))
(parent6-boundary ?p6-name ?p6-data c)
=>
(assert (parent6-icom 7p6-name ?p6-data control 1))

)

(defrule parent6-icom-o
(declare (salience ~2))
(parent6-boundary ?p6-name ?p6-data o)
=>
(assert (parent6-icom ?7p6-name ?p6-data output 1))

)

(defrule parent6-icom—i
(declare (salience ~-2))
(parent6-boundary ?p6 -name ?p6-data i)
=>
(assert (parent6-icom ?p6-name ?p6-data input 1))

)

(defrule parent6-icom-m
(declare (salience -2))
(parent6-boundary ?p6-name ?p6-data m)
=
(assert (parent6-icom ?p6-name ?p6-data mech 1))

C-51

(defrule parenté-control-add
(declare (salience -=3))
?721<-(parent6-icom ?p6-name ?datal control ?one)
7£2<~(parent6~icom ?p6-name ?data2 control ?n)
(test (neq ?datal ?data2))
=>
(retract 71 ?712)
(bind ?total (+ 7one ?n))
(assert (parent6-icom ?p6-name =(gensym) control ?total))

)

.
»

(defrule parent6-output-add
(declare (salience =3))
7f1<~(parent6~icom ?p6-name ?datal output Zone)
7£2<-(parent6-icom ?p6-name ?data2 output 7n)
(test (neq ?datai ?data2))
=>
(retract 7f£1 7£2)
(bind ?total (+ 7one ?n))
(assert (parent6-icom 7p6-name =(gensym) output ?total))

)

(defrule parent6-input-add
(declare (salience -3))
7f1<-(parent6-icom ?p6-name ?datal input Zone)
7£2<~(parent6-icom ?p6-name ?data2 input 7n)
(test (neq 7datal ?data2))
=>
(retract ?7£1 7£2)
(bind ?total (+ Zone ?n))
(assert (parent6-icom ?p6-name =(gensym) input ?total))

)

(defrule parenté-mech-add
(declare (salience -3))
?7f1<-(parent6-icom ?p6-name ?datal mech ?one)
7f2<~(parent6-icom ?p6-name ?data2 mech 7n)

(test (neq 7datal ?data2))

=>

(retract 7f1 7£2)

(bind ?total (+ ?one 7n))

(assert (parent6-icom ?p6-name =(gensym) mech ?total))

(defrule child6-icom~-¢
(declare (salience -2))
(child6-boundary ?c6-parent ?c6-name ?c6-data c)
=>
(assert (child6-icom ?c6-parent ?c6-data control 1))

)

(defrule childé-icom-o
(declare (salience -2))
(child6é-boundary ?c6-parent ?c6-name ?c6-data o)
=>
(assert (child6é-icom ?c6-parent ?c6-data output 1))

)

(defrule child6-icom-i
(declare (salience ~2))
(child6-boundary ?c6-parent ?c6-name ?c6-data i)
=>
(assert (child6-icom ?c6-parent ?c6-data input 1))

)

(defrule child6-icom-m
(declare (salience -2))
(child6-boundary ?c6-parent ?c6-name ?cé-data m)
=>
(assert (child6é-icom 7c6-parent ?c€-data mech 1))

)

»

(defrule child6-control-add
(declare (salience -3))
?7£1<-(child6~-icom 7c6-parent 7datal control ?one)
7£2<~(child6~-icom ?c6-parent ?data2 control ?n)
(test (neq 7datal ?data2))
=
(retract 7f1 712)
(bind ?total (+ Zone 7n))
(assert (child6-icom ?7c6-parent =(gensym) control ?total))

(defrule childé-output-add
(declare (salience -3))
?7f1<-(child6-icom ?c6-parent 7datal output ?one)
7£2<-(child6-icom 7c6-parent ?data2 output 7n)
(test (neq ?datal 7data2))

=>
(retract ?f1 ?£2)
(bind ?total (+ 7one ?n))

(assert (childé-icom ?c6-parent =(gensym) output ?total))
)

(defrule childé-input-add
(declare (salience -3))
?£1<~(child6-icom ?c6-parent ?datal input ?one)
?7£2<~(child6-icom ?c6-parent ?data2 input ?n)
(test (neq ?datal ?data2))
=
(retract ?f1 7£2)
(bind ?7total (+ ?one ?n))
(assert (childé-icom ?c6-parent =(gensym) input ?total))

)

(defrule child6-mech-add
(declare (salience -3))
7£1<-(child6-icom 7c6-parent ?datal mech 7one)
?7£2<-(child6-icom ?c6-parent ?data2 mech 7n)
(test (neq 7datal 7data2))
=>
(retract ?f1 712)
(bind 7total (+ Zone 7n))
(assert (childé-icom ?c6-parent =(gensym) mech ?total))

)

3 ARk R Kok Aok 3K KRR kA K AR K ek ok o o oo ko ok sk tolok ok ko ok ok sk ook dokok ok sk ok
; Check Parent with 6 child boundary icom number consistancy

(defrule check-parent-6child-control
(declare (salience -6))
(parent6-icom ?p6-name ? control ?p)
(child6-icom ?p6-name 7 control 7¢)
(test (1= ?7p 7¢))
=>

(if (> 7p 7¢)

then

(bind ?7pd (- ?p ?¢))

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t * of parent activity "?p6-name" is "?pd" control(s) more than " crlf)
(printout t " its child activities." crif)

(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)

(printout t ® Please recheck the syntax." crlf)
else
(bind ?ed (- ?¢ 7p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of the parent activity "?p6-name" is "?cd" control(s) less " crlf)
(printout t " than its child boundary controls." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-6child-output
(declare (salience -6))
(parent6-icom ?p6-name ? output ?p)
(childé-icom ?p6~name ? output ?c¢)
(test (!= ?p ?c))
=
(i1 (> ?7p 7¢)
then
(bind ?pd (- ?p %c))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs” crlf)
(printout t " of parent activity " ?p6-name " is " ?pd " output(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout ¢ " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c¢c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of the parent activity " 7p6-name " is " %cd " output(s) less " crif)
(printout t " than its child boundary outputs.' crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))

(defrule check-parent-6chi1ld-input
(declare (salience -6))
(parent6-icom ?p6-name ? input ?p)
(child6é-icom 7p6-name ? input 7c)
(test (!= 7p ?¢))
=>
(if (> 7p 7¢)
then
(bind ?pd (- 7p 7¢c))
(printout t "WARNING, there might be zn ERRDR: The number of boundary inputs" crlf)

(printout t " of parent activity * ?p6-name " is " ?pd " input(s) more " crlf)
(printout t " than its child activities.” crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs” crlf)

(printout t " of the parent activity " ?pé-name " is " ?cd " input(s) less

(printout t " than its child boundary inputs." crilf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlt)
(printout t " Flease recheck the syntax." crlf)

))

(defrule check-parent-6child-mech
(declare (salience -6))
(parent6-icom ?p6-name ? mech ?p)
(child6-icom ?p6-name ? mech ?c)
(test (1= ?7p 7¢))
=>
(it (> 7p 7¢)
then
(bind ?pd (- ?p 7¢))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t * of parent activity " ?p6-name " is " 7pd " mechanism(s) more
(printout t " than its child activities." crlf)

(printout t " Are thare f‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?¢ 7p))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of the parent activity " ?p6~name " is " 7cd " mechnaism(s) less
(printout t " its child child boundary mechanisms." crlf)
(printout t " Are there ‘‘consists of’’ data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
))
R R N R
HH Auxiliary Rules for checking any parent activity that have more than

;3 six child activities up to 3 levels of hierarchy.

..

))l)’)’)’)1))7))”,))))),))),)))’))))))1)))’))))”)’)"l,,’)”l))’))’,l”,,))’)l),’

(defrule create-A7
(declare (salience 5))
(act-numb ?acta7 A7)

=>
(assert (act ?acta7 7))

)

(defrule create-Ai7
(declare (salience §))
(act-numb %actal7? A17)

=>
(assert (act ?actail?7 1 7))

)

(defrule create-A27

C-56

(declare (salience 5))
(act-numb ?acta27 A27)
=>
(assert (act ?acta7? 2 7))
)

(defrule create-A37
(declare (salience 5))
(act-numb ?acta37? A37)

=
(assert (act ?acta37 3 7))

)

(defrule create-A47
(declare (salience 5))
(act-numb ?actad47 A4T)

=
(assert (act ?actad? 4 7))

)

(defrule create-A57
(declare (salience 5))
(act-numb ?actab7 A5T)

=>
(assert (act ?actaS7 5 7))

)

(defrule create-A67
(declare (salience 5))
(act-numb 7acta67 A67)

=>
(assert (act ?actab7? 6 7))

)

(defrule create-A117
(declare (salience 5))
(act-numb ?actall? A117)
=>
(assert (act ?actaii17 11 7))
)

(defrule create-A127
(declare (salience 5))
(act-numb ?actal27 A127)
=>
(assert (act ?actal27 1 2 7))
)

(defrule create-A137
(declare (salience 5))

(act-numb ?actai37 A137)
=>

(assert (act ?acta137 1 3 7))
)

(defrule create-A147
(declare (salience 5))
(act-numb ?actaid? 4147)
=>
(assert (act ?actald7 1 4 7))
)

(defrule create-A157
(declare (salience 5))
(act-numb ?actal57 A157)
=>
(assert (act ?actal57 1 5 7))
)
(defrule create-A167
(declare (salience 5))
(act-numb ?actai67 A167)
=>
(assert (act ?actalé?7 1 6 7))
)

(defrule create-A217
(declare (salience 5))
(act-numb ?acta21i7 A217)
=>
(assert (act 7acta217 21 7))
)

(defrule create-A227
(declare (salience .))
(act-numb ?acta227 A227)
=>
(assert (act 7acta227 2 2 7))
)

(defrule create-A237
(declare (salience 5))
(act-numb ?acta237 A237)
=>
(assert (act ?7acta237 2 3 7))
)

(defrule create-A247
(declare (salience 5))
(act-numb ?acta247 A247)
=>
(assert (act 7acta247 2 4 7))
)

C-58

(defrule create-A257
(declare (salience 5))
(act~numb ?acta257 A257)

=>
(assert (act ?acta257 2 6

)

(defrule create-A267
(declare (salience 5))
(act-numb ?acta267 A267)

=
(assert (act ?acta267 2 6

)

(defrule create-A317
(declare (salience 5))
(act-numb ?acta317 A317)}

=>
(assert (act ?acta317 3 1

)

(defrule create-A327
(declare (salience 5))
(act-numb ?acta327 A327)

=>
(assert (act ?acta327 3 2

)

(defrule create-A337
(declare (salience 5))
(act-numb ?acta337 A337)

=>
(assert (act 7acta337 3 3

)

(defrule create-A347
(declare (salience 5))
(act-numb 7acta347 A4347)

=>
(assert (act %acta347 3 4

)

(defrule create-A357
(declare (salience 5))
(act-numb ?acta357 A357)

=>
(assert (act ?acta3s7 3 &

)

(defrule create-A367
(declare (salience 5))
(act-numb 7acta367 A367)

7))

7))

7))

)

7))

7))

7))

=> .
(assert (act ?acta367 3 6
)

(defrule create-A417
(declare (salience 5))
(act-numb ?actadi? A417)

=>
(assert (act ?acta4i7? 4 1

)

(defrule create-A427
(declare (salience 5))
(act-numb ?actad27 A427)

=>
(assert (act ?actad27 4 2

)

(defrule create-A437
(declare (salience 5))
(act-numb ?actad437 A437)

=>
(assert (act ?acta437 4 3

)

(defrule create~A447
(declare (salience 5))
(act~numb ?actad47 A447)

=>
(assert (act 7actad47 4 4

)

(defrule create-A457
(declare (salience 5))
(act-numb ?actad457 A457)

=>
(assert (act 7actad4b7 4 §

)

(defrule create-A467
(declare (salience 5))
(act-numb 7actad67 A467)

=>
(assert (act ?actad487 4 6

)

(defrule create~AS517
(declare (salience 5))
(act-numb ?actab17 A517)

=>
(assert (act ?acta517 5 1

)

7))

7))

7))

7))

7))

7))

7))

7))

(defrule create-A527
(declare (salience 5))
(act-numb ?actab27 A527)

=>
(assert (act ?actab27 5 2

)

(defrule create-A537
(declare (salience 5))
(act-numb ?actab37 A537)

=>
(assert (act ?7actab37 5 3

)

(defrule create-A547
(declare (salience 5))
(act-numb ?actaS47 A547)

=>
(assert (act 7actab47 5 4

)

(defrule create-AS557
(declare (salience §))
(act-numb ?actab57 A557)

=>
(assert (act ?actab87 5 &

)

(defrule create-A567
(declare (salience 5))
(act-numb ?actaS67 AS567)

=
(assert (act ?actabé7 5 6

)

{defrule create-A617
(declare (salience 5))
(act-numb ?acta617 A617)

=>
(assert (act ?acta617 6 1

)

(defrule create-A627
(declare (salience §))
(act-numb ?acta627 A627)

=>
(assert (act ?acta627 6 2

)

(defrule create-A637
(declare (salience 5))
(act-numb ?acta637 4637)

)

7))

7))

7))

7))

7))

7))

=>
(assert (act 7acta637 6 3 7))
)

(defrule create-A647
(declare (salience 5))
(act-numb ?acta647? A647)
=>
(assert (act ?acta647 6 4 7))
)

(defrule create~A65T7
(declare (salience 5))
(act-numb ?acta657 A65T)
=
(sert (act ?acta657 6 5 7))
)

(defrule create-A667
(declare (salience 5))
(act-numb ?acta667 A667)

=>
(assert (act 7acta667 6 6 7))

C-62

Appendix D. SAMPLE ESSENTIAL MODEL IDEF, SYNTAX CHECKING

SCRIPT FILE

NOTICE: Any comments added by the author will be followed by a ¢;’.

csh> a.out
CLIPS/Ada Version 4.30 10/12/89

o o o ok o 3k ok o o e 2k sk ok e ok sk o ok ok Sk ok ok ok o ok o o ok ok o e s e e ok ke ok ok ok ok o ok o ok e e ok ke e ok ok

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* —-— SAtool Il Level Operations -- *
A KSR KRR AR o K KR AR R o Ao A Ko ok o A o ok
Enter To select the desired operation

1. Restore (load) a project from disk

(Warning: all current data cleared)

Save the current project to disk

Display the current project name

Change the current project name

Create and display a data dictionary entry

Add a box/activity to the project

Connect 2 boxes with a data element/arrow

Check Syntax of current project

~— Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 1

Enter the file name of the project to be restored.

Do not include the file name extension.

Enter Name: thesis_err

© 0~ O W

Looking for essential data under file name: thesis_err.esm
Preparing to read facts from disk into a buffer.

A set of facts has been extracted from the file.
Calling procedure to load icom facts.

Procedure to restore ICOM facts done.

A set of facts has been extracted from the file.
Calling procedure to load project name fact.
Procedure to restore project name is done.

A set of facts has been extracted from the file,
Calling procedure to load activity facts.

Procedure to restore activity facts is done.

A set of facts has been extracted from the file.
Calling procedure to load data element facts.
Procedure to restore data element facts is done,

A set of facts has been extracted from the file.
Calling procedure to load historical activity facts.

D-1

Procedure to restore historical activity facts is done.
A set of facts has been extracted from the file.
Calling procedure to load calls relation facts.
Procedure to restore calls relation facts is done.

A set of facts has been extracted from the file.
Calling procedure to load consista of relation facts.
Procedure to restore consists of relation facts is done.
Project successfully restored.

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

e o o o 2 o ok o o s afe e o afe b ke o o o ok ok ok e e o e e e e sk ok o ok ook s e e e ke ok o e ok ok ok ok ok ok ok ok

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* -~ SAtool II Level Operations -- *
AR AR AR AR Ko A AR OK Ao AR ARk R AR Ao oK K
Enter To select the desired operation

1, Restore (load) a project from disk

(Warning: all current data cleared)

Save the current project to disk

Display the current project name

Change the current project name

Create and display a data dictionary entry

Add a box/activity to the project

Connect 2 boxes with a data element/arrow

Check Syntax of current project

—-- Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 9

O 0 ~NOO P WwN

Aok Aok ok sk AR AR R A R sk ook kR R ok ok koo ok
* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU *
* Warning: These operations allow you to directly *
* exercise the object operations. Use extreme care.x*
* --Essential Model and Utility Level Operations-- *
Aok okok ok Ak ok Ak AR KRRk Rk AR Rk ok ok kKo kKR K o

Enter To select the desired submenu of operations
1. Activity Operations Menu
2. Data Element Operations Menu
3. Historical Activity Operations Menu
4. Calls Relation Operations Menu
5. ICOM Relation Operations Menu

Consists_0f Relation Operations Menu
CLIPS Operations Menu
ICOM Fact Operations Menu
Activity Fact Operations Menu
0. EXIT
SELECT A NUMBER: 7

W 0 ~N®»

Enter To select this operation

D-2

1. Assert all facts into the CLIPS Working Memory.

2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: 1

ICOM facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Project name fact retrieved.

CLIPS WM - a set of facts were asserted.

Activity facts for CLIPS retrieved, if any.

CLIPS WM -~ a set of facts were asserted.

Data element facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Historical facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Calls relation facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Consists of relation facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

A1l facts for CLIPS retrieved.

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

Enter To select this operation
1. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: 2

..

)!’)ll)’)’)’))))’))!’)'))D)D!)IJ)!,)))')))))’}P’)ll"l))l)!

; Notice: Each fact is assigned a fact number, f-#.
i There are 753 facts. Only one set of facts are kept here
; as an example.

...

232N 13NN NN NN I NN NI IIIDINNINSEIININNIIDIDIND

*kkxkkkk*Start of Working Memorykkkkwksk,

£-1 (icom-tuple Control_Elevator summons_indication ¢ 1)
(icom-tuple Control_Elevator floor_sensor c 2)

(icom-tuple Control_Elevator door_sensor ¢ 3)

(icom-tuple Control_Elevator system_control ¢ 4)

(icom-tuple Control_Elevator control_signals o 5)
(icom-tuple Control_Elevator passenger_requests i 7)
(icom-tuple Control_Elevator overload_sensor i 8)
(icom-tuple Control_Elevator floor_motor_drive m 9)
(icom-tuple Control_Elevator door_motor_drive m 10.99999999)

H;H\H‘H-'-IthHlH
W 00 N ;b W

.........

£-74 (icom-activity-inputs Control_Elevator 2)
£-75 (icom-activity~-controls Control_Elevator 4)
£-76 (icom-activity-outputs Control_Elevator 1)

D-3

......

(icom-activity-mechanisms Control_Elevator 2)

s e

(project-name Control_Elevator)

(act-name Control_Elevator)

(act-numb Control_Elevator A0Q)

(act-desc Control_Elevator not-null)
(act-has-child Control_Elevator Store_Request)
(act-has~child Control_Elevator Elevator_Control)
(act-has-child Control_Elevator Schedule_Elevator)
(act-ref-type Control_Elevator null)

(act-ret Control_Elevator null)

(act-version Control_Elevator null)

(act-ver-chg Control_Elevator null)

(act-date Control_Elevator null)

(act-author Control_Elevator null)

(data-element-name summons_indication)
(data~element-type summons_indication null)
(data-element-minimum summons_indication null)
(data-element-maximum summons_indication null)
(data-element-data-range summons_indication null)
(data~element-values summons_indication null)
(data-desc summons_indication not-null)
(data~ref summons_indication null)
(data-ref-type summons_indication null)
(data~ele~ver summons_indication null)
(data-e-v-chg summons_indication null)
(data-ele-date summons_indication null)
(data-ele~author summons_indication null)

o v

(historical-tuple Control_Elevator AO)

(calls-relation-tuple Building_Transport Building_Structure A11)
(consists-of-name 1 elevator_status up/down)

(consists-of-name 2 elevator_status stopped)

(consists-of-name 6 sequenced_signals earlier_signals)
(consists-of-name 7 sequenced_signals later_signals)

*kkkkkrkx*End of Working Memory#*k#kkxk

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

Enter To select this operation

1.
2,
3.
0

Assert all facts into the CLIPS Working Memory.
Display all the facts in CLIPS Working Memory.
Clear the CLIPS Working Memory.

EXIT

SELECT A NUMBER: O

PRESS ANY KEY -~ THEN RETURN TO CONTINUE: 1

iRk ok kR kR ko sk ok ok ook Aok Kok
* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU =*
* Warning: These operations allow you to directly =
* exercise the object operations. Use extreme care.*
* --Essential Model and Utility Level Operations-- =*
koo ok Rk Rk kR Sk Rk k Rk Aok ROk k Aok
Enter To select the desired submenu of operations
1. Activity Operations Menu
Data Element Operations Menu
Historical Activity Operations Menu
Calls Relation Operations Menu
ICOM Relation Operations Menu
Consists_0f Relation Operations Menu
CLIPS Operations Menu
ICOM Fact Operations Menu
Activity Fact Operations Menu
0. EXIT
SELECT A NUMBER: 0

O 00 ~NO;mS> WwN

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

o ok o o 3 ke s o o ok A 2 e e o koo 2k o ok oo o ok 3 B ok e e ok ok ok ok e e s ok ok ok ke ok ok e ok e o o ke ke ko ok

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* -- SAtool II Level Operations -- *
T T P e L
Enter To select the desired operation

1. Restore (load) a project from disk

(Warning: all current data cleared)

Save the current project to disk

Display the current project name

Change the current project name

Create and display a data dictionary entry

Add a box/activity to the project

Connect 2 boxes with a data element/arrow

Check Syntax of current project

-~ Submenus for Low Level Operations --—
0. EXIT

SELECT A NUMBER: 8

ICOM facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts wera asserted.

Project name fact retrieved.

CLIPS WM - a set of facts were asserted.

Activity facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Data element facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Historical facts for CLIPS retrieved, if any.

CLIPS WM - a set of facts were asserted.

Calls relation facts for CLIPS retrieved, if any.

.

©W O~ OO b W

CLIPS WM - a set of facts were asserted.
Consists of relation facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.

*x** Eggential Subsystem Syntax Checking Messages **#*
===> The project == Control_Elevator == is checked as follows:

23313993999

ERRORS are related. If a parent activity can’t find

a boundary arrow in its child activities boundaries, that

; means its child activities can’t also find a boundary arrow
; from its parent activity. Two ERRORS will be raised

; for both the parent and child activities. Thus, a midle

; level data error will raise 4 ERROR messages. Since there

; are two sets of parent and child activities.

H A set of same IDEFO figures as described in chapter II
; MARKED with DESIGNED ERRORS is listed below. Inconsistent
; data input are marked with a no, not or a false

; preceeding the data name.

...

.
’)"l””,’D’D””””’)”)"))))”l’l)”’,l)D”’)D,l"’)l’l”'

****x Essential Subsystem Syntax Checking Messages **#*x*
===> The project == Control_Elevator == is checked as follows:

Waring: activity A2 has more than 6 child diagrams.
Notice: Please manually check to make sure that there is no
such an warning lower that 4 levels of hierarchy.
; Activity A27

WARNING: Activity number A265 Send_Signals needs a
description.
ERROR: Activity Check_Destination needs at least 1 control.
; Activity A21 should’nt have two input

ERROR: Data inconsistency between parent activity
Sort_Signals data ‘o’ false_signals and its child
diagrams.

; Parent A26 output

ERROR: Data inconsistency between child activity
Send_Signals data ‘o’ signals and its
parent.

; Child A26 output

ERROR: Data inconsistency between child activity
Compare_Signals data ‘c’ not_confirmed and its
parent.

D-6

Parent
Activity

i
!
!
!
{
!

-

Child

Activities

—
T
A)
ik
’ \
7 \
A-0/

Al2

More General

More Detail

A27 - A2 has 7

child

A26

A265 has no desc

Figure D.1. Hierarchy Diagram for ‘Control Elevator’

AUTHOR: Min-fuh Shyong

DATE: 2/26/91

READER:

PROJECT: Control Elevator

REV: 1.0

DATE:

summons indication

floor sensor

door sensor

system

control

passenger
requests Control control signal
S o
Elevator
overload
sensor
door motor drive
floor motor drive
TITLE: Control Elevator NUMBER:

NODE: A-0

Figure D.2. A-0 Essential Model Diagram for ‘Control Elevator’

AUTHOR: Min-fuh Shyong DATE: 2/26/91 |READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

no-floor sensor

passenger Store
—_—
Request
requests
1 door sensor
received system control
request Elevator .
signals
Control
2
Schedule control
overload sensor
—.
Elevator
3 | signals

floor motor

. door motor drive
drive

TITLE: Schedule Elevator

NODE: A0 NUMBER:

Figure D.3. A0 Diagram for ‘Control Elevator’

D-9

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:
PROJECT: Control Elevator REV: 1.0 DATE:
summons indication
no passenger Manage elevator
Summons
request Request status
Manage received
s Destination .
request

NODE: Al TITLE: Manage Request NUMBER:

Figure D.4. Al Diagram for ‘Control Elevator’

D-10

AUTHOR: Min-fuh Shyong

DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:
summons ndication
plevator
ktatus
destination
up/down Control request Store
> D destination
gl R est
equest
1 Request 2
Clecar . .
Display received
Destination completed .
Request
no stopped 3 destination 4 request
NODE: A12 TITLE: Display Request NUMBER:

Figure D.5. Al12 Diagram for ‘Control Elevator’

D-11

AUTHOR: Min-fuh Shyong DATE:02/26/91 READER:
PROJECT: Control Elevator REV: 1.0 DATE:
floor sensor
. destination
received Check
request direction Monitor arrivals
——— sDestination .
Arrival
1
summons W

indication

Manage floors Check confirmed

Floor Arrival

Arrival 3 4

Start
Stop start/ Sort false
AR
Control stop Signals .
5 6] signals
floor motor drive

NODE: A2 TITLE: Manage Arrivals NUMBER:

Figure D.6. A2 Diagram for ‘Control Elevator’

D-12

AUTHOR: Min-fuh Shyong DATE: 02/26/91 [|READER:
PROJECT: Control Elevator REV: 1.0 DATE:
not confirmed
compared
start/ Compare signals Reorder sequenced
signals
—_—
stop Signals Sequence
ealier
signals
Backup backed Store later
Signals Sorted signals
3 signals 4
stored
signals
Send
i Signals signals
floor motor drive
NODE: A26 TITLE: Sort Signals NUMBER:

Figure D.7. A26 Diagram for ‘Control Elevator’

D-13

; Child A.21 control

ERROR: Data inconsistency between child activity
Clear_Destination data ‘i’ no_stopped and its
parent.

; Child of A12, A123 pipelined input

ERROR: Data inconsistency between parent activity
Elevator_Control data ‘o’ signals and its child
diagrams.
; Parent A2 output and A26 output

ERROR: Data inconsistency between parent activity
Elevator_Control data ‘c’ no_floor_sensor and its child
diagrams.
; Parent A2

ERROR: icom inconsistency between activity Elevator_Control and its
child diagram Check_Destination.
; Parent A2 icom inconsistent with its child

ERROR: Data inconsistency between child activity
Sort_Signals data ‘o’ false_signals and its
parent.

; A26 output inconsistent with A2 output

ERROR: Data inconsistency between child activity
Monitor_Arrival data ‘c’ floor_sensor and its
parent.

; A22 control inconsistent with A2

ERROR: Data inconsistency between parent activity
Store_Request data ‘i’ passenger_requests and its
child diagrams.
; Al input inconsistent with Ai1l

ERROR: Data inconsistency between parent activity
Control_Elevator data ‘c’ floor_sensor and its child
diagrams.

; Parent AO control - A2

ERROR: Data inconsistency between child activity
Elevator_Control data ‘c’ no_floor_sensor and its
parent.

; Child A2 control - AO

..

IEE R EERNEEEEEEEEE RN EERE RN EEEEE R IR

; Since there are ERRORS occured, so the icom number

; between each pair of parent and child activities (no matter
; at what level) might be inconsistent. But it might because
; of a pipeline data element. So a WARNING will be fired

D-14

..................... .

R S SR .
P BIINIDIINIDNRIINIIINRINSNDDIDNINIIINIDIIDNY

the syntax checking expert system.
H H H

R IR EEE]
LR 2R BN I IV N BN 20 IS BN N

WARNING, there might be an ERROR: The number of boundary controls
of the parent activity Sort_Signals is 1 control(s) less
than its child boundary controls.

Are there ‘‘consists of’’ data items at boundary?
Please recheck the syntax.

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Manage_Destination is 1 input(s) less
than its child boundary inputs.

Are there ‘‘consists of’’ data items at boundary?
Please recheck the syntax.

WARNING, there might be an ERROR: The number of boundary controls
of parent activity Elevator_Control is 1 control(s) more than
its child activities.

Are there ‘‘consists of’’ data items at boundary?
Please recheck the syntax.

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Elevator_Control is 1 input(s) less
than its child boundary inputs.

Are there ‘‘consists of’’ data items at boundary?
Please recheck the syntax.

ERROR: Data inconsistency between parent activity
Manage_Destination data ‘i’ elevator_status and its child
diagrams.

; Parent A12 pipeline data outout, child data inconsistent

Clips run completed. Rules fired = 196

PRESS ANY KEY - THEN RETURN TO CONTINUE:

--

23NN NI NI NN NI SN NI I ISR NIENEDNDNINIRINIRDINNN

; NOTE: If no errors were found; only a few ‘consists of’ data ;
; elements are used at boundary. Then the Syntax Expert System
; will give the following checking results.

..

IR R N RN R R I I A I A R B A A A 2

**kxk Essential Subsystem Syntax Checking Messages **#*
===> The project == Control_Elevator == is checked as follows:

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Manage_Destination is 1 input(s) less
than its child boundary inputs.

Are there ‘‘consists of’’ data items at boundary?
Please recheck the syntax.

CONGRATULATIONS: No syntax errors encountered.

SUGGESTION: Please recheck logical structure of your project
for perfection

Clips run completed. Rules fired = 178

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

e o o e s e o o ool ok oo o Sk ok o ok ok ok sk ok o ok oo o o e s e e ke ke s ok o ok s ok s ok ok ok ok sk ok ko

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* == SAtool II Level Operations -- *
T T T e e e e
Entexr To select the desired operation

i. Restore (load) a project from disk

(Warning: all current data cleared)

2. Save the current project to disk
3. Display the current project name
4. Change the current project name
5. Create and display a data dictionary entry
6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -~ Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 0

csh> exit

csh>

D-16

